用户名: 密码: 验证码:
Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters
详细信息    查看全文
  • 作者:Alicja Wzorek ; Azusa Sato ; Józef Drabowicz ; Vadim A. Soloshonok…
  • 关键词:Enantiomeric enrichment ; Self ; disproportionation of enantiomers (SDE) ; Column chromatography ; Recrystallization
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:48
  • 期:2
  • 页码:605-613
  • 全文大小:587 KB
  • 参考文献:Aceña JL, Sorochinsky AE, Katagiri T, Soloshonok VA (2013) Unconventional preparation of racemic crystals of isopropyl 3,3,3-trifluoro-2-hydroxypropanoate and their unusual crystallographic structure: the ultimate preference for homochiral intermolecular interactions. Chem Commun 49:373–375CrossRef
    Albrecht M, Soloshonok VA, Schrader L, Yasumoto M, Suhm MA (2010) Chirality-dependent sublimation of α-(trifluoromethyl)-lactic acid: relative vapor pressures of racemic, eutectic, and enantiomerically pure forms, and vibrational spectroscopy of isolated (S,S) and (S,R) dimers. J Fluorine Chem 131:495–504CrossRef
    Baciocchi R, Zenoni G, Mazzotti M, Morbidelli M (2002) Separation of binaphthol enantiomers through achiral chromatography. J Chromatogr A 944:225–240CrossRef PubMed
    Baciocchi R, Mazzotti M, Morbidelli M (2004) General model for the achiral chromatography of enantiomers forming dimers: application to binaphthol. J Chromatogr A 1024:15–20CrossRef PubMed
    Basiuk VA, Gromovoy TY, Chuiko AA, Soloshonok VA, Kukhar VP (1992) A novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines. Synthesis 2:449–451CrossRef
    Bellec A, Guillemin J-C (2010a) A simple explanation of the enhancement or depletion of the enantiomeric excess in the partial sublimation of enantiomerically enriched amino acids. Chem Commun 46:1482–1484CrossRef
    Bellec A, Guillemin J-C (2010b) Attempts to explain the self-disproportionation observed in the partial sublimation of enantiomerically enriched carboxylic acids. J Fluorine Chem 131:545–548CrossRef
    Berkessel A, Jurkiewicz I, Mohan R (2011) Enzymatic dynamic kinetic resolution of oxazinones: a new approach to enantiopure β2-amino acids. ChemCatChem 3:319–330CrossRef
    Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824CrossRef
    Cardillo G, Tomasini C (1996) Asymmetric synthesis of β-amino acids and α-substituted β-amino acids. Chem Soc Rev 25:117–128CrossRef
    Carman RM, Klika KD (1991) The optical fractionation of a partially racemic natural product by chromatography over an achiral substrate. Aust J Chem 44:895–896CrossRef
    Cole DC (1994) Recent stereoselective synthetic approaches to β-amino acids. Tetrahedron 50:9517–9582CrossRef
    Diter P, Taudien S, Samuel O, Kagan HB (1994) Enantiomeric enrichment of sulfoxides by preparative flash chromatography on an achiral phase. J Org Chem 59:370–373CrossRef
    Fogassy E, Nógrádi M, Pálovics E, Schindler J (2005) Resolution of enantiomers by non-conventional methods. Synthesis 10:1555–1568CrossRef
    Forró E, Fülöp F (2004) Direct and indirect enzymatic methods for the preparation of enantiopure cyclic β-amino acids and derivatives from β-lactams. Mini Rev Org Chem 1:93–102CrossRef
    Forró E, Fülöp F (2012) Recent lipase-catalyzed hydrolytic approaches to pharmacologically important β- and γ-amino acids. Curr Med Chem 19:6178–6187PubMed
    Gil-Av E, Schurig V (1994) Resolution of non-racemic mistures in achiral chromatographic systems: a model for the enantioselective effects observed. J Chromatogr A 666:519–525CrossRef
    Gutiérrez-García VM, López-Ruiz H, Reyes-Rangel G, Juaristi E (2001) Enantioselective synthesis of β-amino acids. Part 11: diastereoselective alkylation of chiral derivatives of β-aminopropionic acid containing the α-phenethyl group. Tetrahedron 57:6487–6496CrossRef
    Halab L, Gosselin F, Lubell WD (2000) Design, synthesis, and conformational analysis of azacycloalkane amino acids as conformationally constrained probes for mimicry of peptide secondary structures. Biopolymers 55:101–122CrossRef PubMed
    Han J, Nelson DJ, Sorochinsky AE, Soloshonok VA (2011) Self-disproportionation of enantiomers via sublimation; new and truly green dimension in optical purification. Curr Org Synth 8:310–317CrossRef
    Heck T, Seebach D, Osswald S, ter Wiel MKJ, Kohler H-PE, Geueke B (2009) Kinetic resolution of aliphatic β-amino acid amides by β-aminopeptidases. ChemBioChem 10:1558–1561CrossRef PubMed
    Hruby VJ (1993) Conformational and topographical considerations in the design of biologically active peptides. Biopolymers 33:1073–1082CrossRef PubMed
    Hruby VJ, Balse PM (2000) Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr Med Chem 7:945–970CrossRef PubMed
    Juaristi E (ed) (1997) Enantioselective synthesis of β-amino acids. Wiley-VCH, Weinheim
    Juaristi E, López-Ruiz H (1999) Recent advances in the enantioselective synthesis of β-amino acids. Curr Med Chem 6:983–1004PubMed
    Juaristi E, Quintana D, Escalante J (1994) Enantioselective synthesis of β-amino acids. Aldrichim Acta 27:3–11
    Jung M, Schurig V (1992) Computer simulation of three scenarios for the separation of non-racemic mixtures by chromatography on achiral stationary phases. J Chromatogr 605:161–166CrossRef
    Katagiri T, Yoda C, Furuhashi K, Ueki K, Kubota T (1996) Separation of an enantiomorph and its racemate by distillation: strong chiral recognizing ability of trifluorolactates. Chem Lett 25:115–116CrossRef
    Katagiri T, Takahashi S, Tsuboi A, Suzaki M, Uneyama K (2010) Discrimination of enantiomeric excess of optically active trifluorolactate by distillation: evidence for a multi-center hydrogen bonding network in the liquid state. J Fluorine Chem 131:517–520CrossRef
    Kemp DS (1990) Peptidomimetics and the template approach to nucleation of β-sheets and α-helices in peptides. Trends Biotechnol 8:249–255CrossRef PubMed
    Klika KD (2012) Suggested new terms for describing chiral states and the state-dependent behavior of chiral systems. Int J Org Chem 2:224–232CrossRef
    Klika KD, Soloshonok VA (2014) Terminology related to the phenomenon ‘self-disproportionation of enantiomers’ (SDE). Helv Chim Acta 97:1583–1589CrossRef
    Klika KD, Budovská M, Kutschy P (2010a) NMR spectral enantioresolution of spirobrassinin and 1-methoxyspirobrassinin enantiomers using (S)-(−)-ethyl lactate and modeling of spirobrassinin self-association for rationalization of its self-induced diastereomeric anisochronism (SIDA) and enantiomer self-disproportionation on achiral-phase chromatography (ESDAC) phenomena. J Fluorine Chem 131:467–476CrossRef
    Klika KD, Budovská M, Kutschy P (2010b) Enantiodifferentiation of phytoalexin spirobrassinin derivatives using the chiral solvating agent (R)-(+)-1,1′-bi-2-naphthol in conjunction with molecular modeling. Tetrahedron Asymmetry 21:647–658CrossRef
    Koppenhoefer B, Trettin U (1989) Is it possible to affect the enantiomeric composition by a simple distillation process? Fresenius Z Anal Chem 333:750CrossRef
    Liljeblad A, Kanerva LT (2006) Biocatalysis as a profound tool in the preparation of highly enantiopure β-amino acids. Tetrahedron 62:5831–5854CrossRef
    Marshall GR (1993) A hierarchical approach to peptidomimetic design. Tetrahedron 49:3547–3558CrossRef
    Mastai Y, Völkel A, Cölfen H (2008) Separation of racemate from excess enantiomer of chiral nonracemic compounds via density gradient ultracentrifugation. J Am Chem Soc 130:2426–2427CrossRef PubMed
    Mikami K, Fustero S, Sánchez-Roselló M, Aceña J, Soloshonok V, Sorochinsky A (2011) Synthesis of fluorinated β-amino acids. Synthesis 19:3045–3079
    Nagula G, Huber VJ, Lum C, Goodman BA (2000) Synthesis of α-substituted β-amino acids using pseudoephedrine as a chiral auxiliary. Org Lett 2:3527–3529CrossRef PubMed
    Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok VA, Aceña JL, Kitagawa O (2012) Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. Tetrahedron 68:4013–4017CrossRef
    Nicoud R-M, Jaubert J-N, Rupprecht I, Kinkel J (1996) Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. Chirality 8:234–243CrossRef
    Nieminen V, Murzin DYu, Klika KD (2009) NMR and molecular modeling of the dimeric self-association of the enantiomers of 1,1′-bi-2-naphthol and 1-phenyl-2,2,2-trifluoroethanol in the solution state and their relevance to enantiomer self-disproportionation on achiral-phase chromatography (ESDAC). Org Biomol Chem 7:537–542CrossRef PubMed
    Nussbaum FV, Spiteller P (2003) β-Amino acids in nature. In: Schmuck C, Wennemers H (eds) Highlights in bioorganic chemistry: methods and application. Wiley-VCH, Weinheim
    Ogawa S, Nishimine T, Tokunaga E, Nakamura S, Shibata N (2010) Self-disproportionation of enantiomers of heterocyclic compounds having a tertiary trifluoromethyl alcohol center on chromatography with a non-chiral system. J Fluorine Chem 131:521–524CrossRef
    Ponsinet R, Chassaing G, Vaissermann J, Lavielle S (2000) Diastereoselective synthesis of β2-amino Acids. Eur J Org Chem 2000:83–90CrossRef
    Rizo J, Gierasch LM (1992) Constrained peptides: models of bioactive peptides and protein substructures. Annu Rev Biochem 61:387–418CrossRef PubMed
    Saviano M, Iacovino R, Menchise V, Benedetti E, Bonora GM, Gatos M, Graci L, Formaggio F, Crisma M, Toniolo C (2000) Conformational restriction through Ciα ↔ Ciα cyclization: Ac12c, the largest cycloaliphatic Cα,α-disubstituted glycine known. Biopolymers 53:200–212CrossRef PubMed
    Schurig V (2009) Elaborate treatment of retention in chemoselective chromatography—the retention increment approach and non-linear effects. J Chromatogr A 1216:1723–1736CrossRef PubMed
    Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed 45:766–769CrossRef
    Soloshonok VA, Berbasov DO (2006) Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers. Chim Oggi/Chem Today 24:44–47
    Soloshonok VA, Kirilenko AG, Fokina NA, Shishkina IP, Galushko SV, Kukhar VP, Švedas VK, Kozlova EV (1994a) Biocatalytic resolution of β-fluoroalkyl-β-amino acids. Tetrahedron Asymmetry 5:1119–1126CrossRef
    Soloshonok VA, Kirilenko AG, Fokina NA, Kukhar VP, Galushko SV, Švedas VK, Resnati G (1994b) Chemo-enzymatic approach to the synthesis of each of the four isomers of α-alkyl-β-fluoroalkyl-substituted β-amino acids. Tetrahedron Asymmetry 5:1225–1228CrossRef
    Soloshonok VA, Fokina NA, Rybakova AV, Shishkina IP, Galushko SV, Sorochinsky AE, Kukhar VP, Savchenko MV, Švedas VK (1995) Biocatalytic approach to enantiomerically pure β-amino acids. Tetrahedron Asymmetry 6:1601–1610CrossRef
    Soloshonok VA, Ueki H, Yasumoto M, Mekala S, Hirschi JS, Singleton DA (2007) Phenomenon of optical self-purification of chiral non-racemic compounds. J Am Chem Soc 129:12112–12113CrossRef PubMed
    Soloshonok VA, Švedas VK, Kukhar VP, Kirilenko AG, Rybakova AV, Solodenko VA, Fokina NA, Kogut OV, Galaev IY, Kozlova EV, Shishkina IP, Galushko SV (1993) An enzymatic entry to enantiopure β-amino acids. Synlett 5:339–341CrossRef
    Song W, Zhou Y, Fu Y, Xu W (2013) Self-disproportionation of enantiomers of prazoles via achiral, gravity-driven silica gel column chromatography. Tetrahedron Asymmetry 24:909–912CrossRef
    Sorochinsky AE, Katagiri T, Ono T, Wzorek A, Aceña JL, Soloshonok VA (2013a) Optical purifications via self-disproportionation of enantiomers by achiral chromatography: case study of a series of a-cf3-containing secondary alcohols. Chirality 25:365–368CrossRef PubMed
    Sorochinsky AE, Aceña JL, Soloshonok VA (2013b) Self-disproportionation of enantiomers of chiral, non-racemic fluoroorganic compounds: role of fluorine as enabling element. Synthesis 45:141–152
    Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar M-I (2002) β-Amino acids: versatile peptidomimetics. Curr Med Chem 9:811–822CrossRef PubMed
    Suzuki Y, Han J, Kitagawa O, Aceña JL, Klika KD, Soloshonok VA (2015) A comprehensive examination of the self-disproportionation of enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. RSC Adv 5:2988–2993CrossRef
    Szeleczky Z, Bagi P, Pálovics E, Fogassy E (2015) The effect of the eutectic composition on the outcome of kinetically and thermodynamically controlled resolutions that are based on the formation of diastereomers. Tetrahedron Asymmetry 26:377–384CrossRef
    Tamariz J (1997) Biological Activity of [beta]-Amino Acids and [beta]-Lactams. In: Juaristi E (ed) Enantioselective synthesis of β-amino acids. Wiley-VCH, Weinheim, pp 45–66
    Tarasevych AV, Sorochinsky AE, Kukhar VP, Chollet A, Daniellou R, Guillemin J-C (2013) Partial sublimation of enantioenriched amino acids at low temperature. is it coming from the formation of a euatmotic composition1 of the gaseous phase? J Org Chem 78:10530–10533CrossRef PubMed
    Tateishi K, Tsukagoshi S, Nakamura T, Watanabe S, Soloshonok VA, Kitagawa O (2013) Chiral initiator-induces self-disproportionation of enantiomers via achiral chromatography: application to enantiomer separation of racemate. Tetrahedron Lett 54:5220–5223CrossRef
    Trapp O, Schurig V (2010) Nonlinear effects in enantioselective chromatography: prediction of unusual elution profiles of enantiomers in non-racemic mixtures on an achiral stationary phase doped with small amounts of a chiral selector. Tetrahedron Asymmetry 21:1334–1340CrossRef
    Ueki H, Yasumoto M, Soloshonok VA (2010) Rational application of self-disproportionation of enantiomers via sublimation—a novel methodological dimension for enantiomeric purifications. Tetrahedron Asymmetry 21:1396–1400CrossRef
    Wu BA, Szymanski W, de Wildeman S, Poelarends GJ, Feringa BL, Janssen DB (2010) Efficient tandem biocatalytic process for the kinetic resolution of aromatic β-amino acids. Adv Synth Catal 352:1409–1412CrossRef
    Wzorek A, Klika KD, Drabowicz J, Sato A, Aceña JL, Soloshonok VA (2014) The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. Org Biomol Chem 12:4738–4746CrossRef PubMed
    Wzorek A, Sato A, Drabowicz J, Soloshonok VA, Klika KD (2015) Enantiomeric enrichments via the self-disproportionation of enantiomers (SDE) by achiral, gravity-driven column chromatography: a case study using N-acetyl-1-(phenyl)ethylamine for optimizing the enantiopure yield and magnitude of the SDE. Helv Chim Acta 98:1147–1159CrossRef
    Xie C, Wu L, Han J, Soloshonok VA, Pan Y (2015) Assembly of fluorinated quaternary stereogenic centers through catalytic enantioselective detrifluoroacetylative aldol reactions. Angew Chem Int Ed 54:6019–6023CrossRef
    Yasumoto M, Ueki H, Ono T, Katagiri T, Soloshonok VA (2010a) Self-disproportionation of enantiomers of isopropyl 3,3,3-(trifluoro)lactate via sublimation: sublimation rates vs. enantiomeric composition. J Fluorine Chem 131:535–539CrossRef
    Yasumoto M, Ueki H, Soloshonok VA (2010b) Self-disproportionation of enantiomers of 3,3,3-trifluorolactic acid amides via sublimation. J Fluorine Chem 131:266–269CrossRef
    Yasumoto M, Ueki H, Soloshonok VA (2010c) Self-disproportionation of enantiomers of α-trifluoromethyl lactic acid amides via sublimation. J Fluorine Chem 131:540–544CrossRef
    Zhou S, Wang J, Chen X, Aceña JL, Soloshonok VA, Liu H (2014) Chemical kinetic resolution of unprotected β-substituted β-amino acids using recyclable chiral ligands. Angew Chem Int Ed 53:7883–7886CrossRef
  • 作者单位:Alicja Wzorek (1) (2)
    Azusa Sato (2) (3)
    Józef Drabowicz (4) (5)
    Vadim A. Soloshonok (2) (6)
    Karel D. Klika (7)

    1. Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland
    2. Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain
    3. Department of Chemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
    4. Department of Heteroorganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
    5. Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-201, Częstochowa, Poland
    6. IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Spain
    7. Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69009, Heidelberg, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
文摘
We report the best performance yet for the self-disproportionation of enantiomers (SDE) via achiral chromatography as typically used in laboratories for the isolated yield of the excess enantiomer using N-acetyl β-amino acid ethyl esters. The results are the most convincing ever demonstration of the capability of the SDE for practical-scale enantiopurification as comparable, or even superior for some systems, to that of recrystallization. For example, from a sample of 94.4 % ee, a yield of 71 % of enantiopure material was isolated in a single chromatographic run. Moreover, the lack of an esoteric structural entity, e.g. strongly polarizing groups, such as, for instance CF3, highlights the fact that the phenomenon is not dependent on the presence of such and thus the process is relevant to any usual-type structure. In contrast to recrystallization, the procedure is predictable, general, and dependable, boding well for its widespread application in routine laboratory settings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700