用户名: 密码: 验证码:
Neutral Theory Overestimates Extinction Times in Nonhuman Primates
详细信息    查看全文
  • 作者:Francisco Henao-Diaz ; Pablo R. Stevenson
  • 关键词:Diversification rate ; Phylogeny ; Random drift ; Speciation ; Sum ; zero theory
  • 刊名:International Journal of Primatology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:36
  • 期:4
  • 页码:790-801
  • 全文大小:370 KB
  • 参考文献:Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114鈥?18.CrossRef
    Baker, T. R., Pennington, R. T., Magallon, S., et al. (2014). Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 17(5), 527鈥?36. doi:10.鈥?111/鈥媏le.鈥?2252 .
    Bickford, D., Lohman, D. J., Sodhi, N. S., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148鈥?55.CrossRef
    Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507鈥?12.CrossRef PubMed
    Campbell, C. J. (2011). Primates in perspective. New York: Oxford University Press.
    Davies, T. J., Allen, A. P., Borda-de-脕gua, L., Regetz, J., & Meli谩n, C. J. (2011). Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution, 65(7), 1841鈥?850.CrossRef PubMed
    Defler, T. R., & Bueno, M. L. (2007). Aotus diversity and the species problem. Primate Conservation, 22, 55鈥?0.CrossRef
    Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185鈥?192.CrossRef PubMed
    Eiserhardt, W. L., Svenning, J.-C., Baker, W. J., Couvreur, T. L., & Balslev, H. (2013). Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3. doi:10.鈥?038/鈥媠rep01164 .
    Etienne, R. S., & Apol, M. E. F. (2008). Estimating speciation and extinction rates from diversity data and the fossil record. Evolution, 63, 244鈥?55.CrossRef PubMed
    Fabre, P., Rodrigues, A., & Douzery, E. (2009). Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution, 53, 808.CrossRef PubMed
    Fargione, J., Brown, C. S., & Tilman, D. (2003). Community assembly and invasion: An experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the USA, 100, 8916鈥?920.PubMed Central CrossRef PubMed
    Finstermeier, K., Zinner, D., Brameier, M., Meyer, M., Kreuz, E., Hofreiter, M., & Roos, C. (2013). A mitogenomic phylogeny of living primates. PLoS ONE, 8(7), e69504.PubMed Central CrossRef PubMed
    FitzJohn, R. G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3, 1084鈥?092.CrossRef
    Freckleton, R., Harvey, P., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160, 712鈥?26.CrossRef PubMed
    Gillespie, J. H. (2010). Population genetics: A concise guide. Baltimore: Johns Hopkins University Press.
    G贸mez, J. M., & Verd煤, M. (2012). Mutualism with plants drives primate diversification. Systematic Biology, 61, 567鈥?77.CrossRef PubMed
    Hayes, B. J., Visscher, P. M., McPartlan, H. C., & Goddard, M. E. (2003). Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Research, 13, 635鈥?43.PubMed Central CrossRef PubMed
    Hubbell, S. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.
    Jabot, F., & Chave, J. (2009). Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecology Letters, 12, 239鈥?48.CrossRef PubMed
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444鈥?48.CrossRef PubMed
    Johnson, D. (2012). Primate info net. In The life spans of nonhuman primates. Available at: http://鈥媝in.鈥媝rimate.鈥媤isc.鈥媏du/鈥媋boutp/鈥媝hys/鈥媗ifespan.鈥媓tml .
    Karst, J., Gilbert, B., & Lechowicz, M. J. (2005). Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology, 86, 2473鈥?486.CrossRef
    Kimura, M. (1985). The neutral theory of molecular evolution. Cambridge, UK: Cambridge University Press.
    Leigh, G. (1981). The average lifetime of a population in a varying environment. Journal of Theoretical Biology, 90, 213鈥?39.CrossRef PubMed
    MacArthur, R. (1970). Species packing and competitive equilibrium for many species. Theoretical Population Biology, 1, 1鈥?1.CrossRef PubMed
    Magnuson-Ford, K., & Otto, S. P. (2012). Linking the investigations of character evolution and species diversification. The American Naturalist, 180, 225鈥?45.CrossRef PubMed
    Maia, R., Rubenstein, D. R., & Shawkey, M. D. (2013). Key ornamental innovations facilitate diversification in an avian radiation. Proceedings of the National Academy of Sciences, 110(26), 10687鈥?0692. doi:10.鈥?073/鈥媝nas.鈥?220784110 .
    Nee, S. (2001). Inferring speciation rates from phylogenies. Evolution, 55, 661鈥?68.CrossRef PubMed
    Nee, S. (2005). The neutral theory of biodiversity: do the numbers add up? Functional Ecology, 19(1), 173鈥?76. doi:10.鈥?111/鈥媕.鈥?269-8463.鈥?005.鈥?0922.鈥媥 .
    Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877鈥?84.CrossRef PubMed
    Paradis, E. (2011). Analysis of phylogenetics and evolution with R. New York: Springer Science+Business Media.
    Perelman, P., Johnson, W. E., Roos, C., et al. (2011). A molecular phylogeny of living primates. PLoS Genetics, 7, e1001342.PubMed Central CrossRef PubMed
    Pozzi, L., Hodgson, J. A., Burrell, A. S., Sterner, K. N., Raaum, R. L., & Disotell, T. R. (2014). Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 75, 165鈥?83.PubMed Central CrossRef PubMed
    R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
    Rabosky, D. L. (2010). Extinction rates should not be estimated from molecular phylogenies. Evolution, 64, 1816鈥?824.CrossRef PubMed
    Rabosky, D. L., Slater, G. J., & Alfaro, M. E. (2012). Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biology, 10, e1001381.PubMed Central CrossRef PubMed
    Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591鈥?01.CrossRef PubMed
    Ricklefs, R. E. (2006). The unified neutral theory of biodiversity: Do the numbers add up? Ecology, 87, 1424鈥?431.CrossRef PubMed
    Ricklefs, R. E. (2007). Estimating diversification rates from phylogenetic information. Trends in Ecology & Evolution, 22, 601鈥?10.CrossRef
    Ricklefs, R. E., & Renner, S. S. (2012). Global correlations in tropical tree species richness and abundance reject neutrality. Science, 335, 464鈥?67.CrossRef PubMed
    Rosindell, J., Hubbell, S. P., & Etienne, R. S. (2011). The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution, 26, 340鈥?48.CrossRef
    Rowe, N., & Myers, M. (2011). All the world鈥檚 primates. Available at: www.鈥媋lltheworldsprim鈥媋tes.鈥媜rg (Accessed November 3, 2011).
    Sanderson, M. J., & Donoghue, M. J. (1996). Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology & Evolution, 11, 15鈥?0.CrossRef
    Shultz, S., Opie, C., & Atkinson, Q. D. (2011). Stepwise evolution of stable sociality in primates. Nature, 479, 219鈥?22.CrossRef PubMed
    Siepielski, A. M., Hung, K.-L., Bein, E. E. B., & McPeek, M. A. (2010). Experimental evidence for neutral community dynamics governing an insect assemblage. Ecology, 91, 847鈥?57.CrossRef PubMed
    Smuts, B. B., Cheney, D. L., Seyfarth, R. M., et al. (1987). Primate societies. Chicago: University of Chicago Press.
    Springer, M. S., Meredith, R. W., Gatesy, J., et al. (2012). Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species Supermatrix. PLoS ONE, 7, e49521.PubMed Central CrossRef PubMed
    Stadler, T. (2011a). Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the National Academy of Sciences of the USA, 108, 6187鈥?192.
    Stadler, T. (2011b). Simulating trees with a fixed number of extant species. Systematic Biology, 60(5), 676鈥?84.
    Stanley Harpole, W., & Tilman, D. (2006). Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15鈥?3.PubMed
    Stevenson, P. R. (2001). The relationship between fruit production and primate abundance in Neotropical communities. Biological Journal of the Linnean Society, 72, 161鈥?78. doi:10.鈥?111/鈥媕.鈥?095-8312.鈥?001.鈥媡b01307.鈥媥 .CrossRef
    Stevenson, P. R. (2010). Efectos de la fragmentaci贸n y de la producci贸n de frutos en comunidades de primates neotropicales. Pereira-Bengoa, V., Stevenson, P. R., Bueno, M. & Nassar-Montoya, F. (Eds.), Avances en la primatolog铆a del nuevo mundo (pp. 239鈥?57). Bogot谩 D.C.
    Volkov, I., Banavar, J. R., He, F., Hubbell, S. P., & Maritan, A. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438(7068), 658鈥?61.CrossRef PubMed
    Weiher, E., & Keddy, P. (2001). Ecological assembly rules: Perspectives, advances, retreats. Cambridge, UK: Cambridge University Press.
    Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution, 60, 842鈥?55.CrossRef PubMed
  • 作者单位:Francisco Henao-Diaz (1) (2)
    Pablo R. Stevenson (1)

    1. Departamento de Ciencias Biol贸gicas, Universidad de Los Andes, Bogot谩, D.C., Colombia
    2. Asociaci贸n Primatol贸gica Colombiana (APC), Bogot谩, D.C., Colombia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Evolutionary Biology
    Human Genetics
    Anthropology
  • 出版者:Springer Netherlands
  • ISSN:1573-8604
文摘
The unified neutral theory of biodiversity states that random processes and stochastic events drive species abundance and turnover and that each lineage has an equal probability of speciation. Predictions based on this model have been tested only a few times using evolutionary rates. We used an individual-based approach to estimate the waiting times to extinction (the time between one extinction event and the next) and compare those with the neutral model. We calculated the speciation and extinction rates for all subfamilies in the primate order using a time-calibrated phylogeny and compared the estimates against those predicted by the neutral theory using taxon area distribution and population densities. In most cases, the extinction time obtained from the neutral theory exceeded that estimated using phylogenetic data by several orders of magnitude. Our main result indicates that drift is too slow to fully explain evolutionary rates of turnover in primates, suggesting that other factors besides chance may influence primate diversification rates. Although estimates of forest cover, taxon area distribution, and species densities may influence the results, the observed differences do not support the predictions of neutral theory and question the model as a reference for conservation purposes. Keywords Diversification rate Phylogeny Random drift Speciation Sum-zero theory

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700