用户名: 密码: 验证码:
The 3T3-L1 adipocyte glycogen proteome
详细信息    查看全文
  • 作者:David Stapleton (1)
    Chad Nelson (2)
    Krishna Parsawar (2)
    Marcelo Flores-Opazo (1)
    Donald McClain (3)
    Glendon Parker (3) (4)
  • 关键词:Glycogen ; Glycogen ; associated proteins ; 3T3 ; L1 adipocytes ; Proteomics ; 14 ; 3 ; 3 proteins ; Protein phosphatase 1 regulatory subunit 3D
  • 刊名:Proteome Science
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:11
  • 期:1
  • 全文大小:271KB
  • 参考文献:1. Smythe C, Caudwell FB, Ferguson M, Cohen P: Isolation and structural analysis of a peptide containing the novel tyrosyl-glucose linkage in glycogenin. / EMBO J 1988, 7:2681-686.
    2. Roach PJ, DePaoli-Roach AA, Hurley TD, Tagliabracci VS: Glycogen and its metabolism: some new developments and old themes. / Biochem J 2012, 441:763-87. CrossRef
    3. Ryu JH, Drain J, Kim JH, McGee S, Gray-Weale A, Waddington L, Parker GJ, Hargreaves M, Yoo SH, Stapleton D: Comparative structural analyses of purified glycogen particles from rat liver, human skeletal muscle and commercial preparations. / Int J Biol Macromol 2009, 45:478-82. CrossRef
    4. Besford QA, Sullivan MA, Zheng L, Gilbert RG, Stapleton D, Gray-Weale A: The structure of cardiac glycogen in healthy mice. / Int J Biol Macromol 2012, 51:887-91. CrossRef
    5. Philp A, Hargreaves M, Baar K: More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. / American Journal of Physiology - Endocrinology And Metabolism 2012, 302:E1343-E1351. CrossRef
    6. Brady MJ, Kartha PM, Aysola AA, Saltiel AR: The role of glucose metabolites in the activation and translocation of glycogen synthase by insulin in 3T3-L1 adipocytes. / J Biol Chem 1999, 274:27497-7504. CrossRef
    7. Fernandez-Novell JM, Bellido D, Vilaro S, Guinovart JJ: Glucose induces the translocation of glycogen synthase to the cell cortex in rat hepatocytes. / Biochem J 1997, 321:227-31.
    8. Chowrashi P, Mittal B, Sanger JM, Sanger JW: Amorphin is phosphorylase; phosphorylase is an alpha-actinin-binding protein. / Cell Motil Cytoskeleton 2002, 53:125-35. CrossRef
    9. Cheng A, Zhang M, Gentry MS, Worby CA, Dixon JE, Saltiel AR: A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori’s disease. / Genes Dev 2007, 21:2399-409. CrossRef
    10. Meyer F, Heilmeyer LM Jr, Haschke RH, Fischer EH: Control of phosphorylase activity in a muscle glycogen particle. I. Isolation and characterization of the protein-glycogen complex. / J Biol Chem 1970, 245:6642-648.
    11. Wu J, Liu J, Thompson I, Oliver CJ, Shenolikar S, Brautigan DL: A conserved domain for glycogen binding in protein phosphatase-1 targeting subunits. / FEBS Lett 1998, 439:185-91. CrossRef
    12. Wang J, Stuckey JA, Wishart MJ, Dixon JE: A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. / J Biol Chem 2002, 277:2377-380. CrossRef
    13. Vardanis A: Fractionation of particulate glycogen and bound enzymes using high- performance liquid chromatography. / Anal Biochem 1990, 187:115-19. CrossRef
    14. Satoh K, Sato K: Glycogen-binding protein components of rat tissues. / Biochem Biophys Res Commun 1980, 96:28-3. CrossRef
    15. Parker GJ, Lund KC, Taylor RP, McClain DA: Insulin resistance of glycogen synthase mediated by O-linked N-acetylglucosamine. / J Biol Chem 2003, 278:10022-0027. CrossRef
    16. Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado-Escueta AV, Minassian BA, Depaoli-Roach AA, Roach PJ: Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. / Proc Natl Acad Sci USA 2007, 104:19262-9266. CrossRef
    17. Dougherty MK, Morrison DK: Unlocking the code of 14--3. / J Cell Sci 2004, 117:1875-884. CrossRef
    18. Rybicka KK: Glycosomes–the organelles of glycogen metabolism. / Tissue Cell 1996, 28:253-65. CrossRef
    19. Stapleton D, Nelson C, Parsawar K, McClain DA, Gilbert-Wilson R, Barker E, Rudd B, Brown K, Hendrix W, O’Donnell P, Parker GJ: Analysis of hepatic glycogen-associated proteins. / Proteomics 2010, 10:2320-329. CrossRef
    20. Fernandez-Novell JM, Roca A, Bellido D, Vilaro S, Guinovart JJ: Translocation and aggregation of hepatic glycogen synthase during the fasted-to-refed transition in rats. / Eur J Biochem 1996, 238:570-75. CrossRef
    21. Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, de la Iglesia N, Cid E, Guinovart JJ: Control of glycogen deposition. / FEBS Lett 2003, 546:127-32. CrossRef
    22. Nielsen JN, Derave W, Kristiansen S, Ralston E, Ploug T, Richter EA: Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. / J Physiol 2001, 531:757-69. CrossRef
    23. Prats C, Cadefau JA, Cusso R, Qvortrup K, Nielsen JN, Wojtaszewki JF, Hardie DG, Stewart G, Hansen BF, Ploug T: Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis. / J Biol Chem 2005, 280:23165-3172. CrossRef
    24. Greenberg CC, Jurczak MJ, Danos AM, Brady MJ: Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. / Am J Physiol Endocrinol Metab 2006, 291:E1-. CrossRef
    25. Ferrannini E, Lanfranchi A, Rohner-Jeanrenaud F, Manfredini G, Van de Werve G: Influence of long-term diabetes on liver glycogen metabolism in the rat. / Metabolism 1990, 39:1082-088. CrossRef
    26. Whitton PD, Hems DA: Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats. / Biochem J 1975, 150:153-65.
    27. Jurczak MJ, Danos AM, Rehrmann VR, Allison MB, Greenberg CC, Brady MJ: Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice. / American Journal of Physiology - Endocrinology And Metabolism 2007, 292:E952-E963. CrossRef
    28. Eichner RD: Adipose-tissue glycogen-synthesis. / Int J Biochem 1984, 16:257-61. CrossRef
    29. Birsoy K, Soukas A, Torrens J, Ceccarini G, Montez J, Maffei M, Cohen P, Fayzikhodjaeva G, Viale A, Socci ND, Friedman JM: Cellular program controlling the recovery of adipose tissue mass: An in vivo imaging approach. / Proc Natl Acad Sci USA 2008, 105:12985-2990. CrossRef
    30. Tiberia E, Turnbull J, Wang T, Ruggieri A, Zhao XC, Pencea N, Israelian J, Wang Y, Ackerley CA, Wang P: Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin-deficient Lafora disease. / J Biol Chem 2012, 287:25650-5659. CrossRef
    31. Bieri M, Mobbs JI, Koay A, Louey G, Mok YF, Hatters DM, Park JT, Park KH, Neumann D, Stapleton D, Gooley PR: AMP-activated protein kinase beta-subunit requires internal motion for optimal carbohydrate binding. / Biophys J 2012, 102:305-14. CrossRef
    32. Danos AM, Osmanovic S, Brady MJ: Differential regulation of glycogenolysis by mutant protein phosphatase-1 glycogen-targeting subunits. / J Biol Chem 2009, 284:19544-9553. CrossRef
    33. Jiang S, Wells CD, Roach PJ: Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. / Biochem Biophys Res Commun 2011, 413:420-25. CrossRef
    34. Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, Depaoli-Roach AA, Wells CD, Skurat AV, Roach PJ: Starch binding domain containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. / J Biol Chem 2010, 285:34960-4971. CrossRef
    35. Pappin DJ, Hojrup P, Bleasby AJ: Rapid identification of proteins by peptide-mass fingerprinting. / Curr Biol 1993, 3:327-32. CrossRef
    36. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M: Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. / Mol Cell Proteomics 2005, 4:1265-272. CrossRef
    37. Roach PJ: Glycogen and its metabolism. / Curr Mol Med 2002, 2:101-20. CrossRef
    38. Munro S, Ceulemans H, Bollen M, Diplexcito J, Cohen PT: A novel glycogen-targeting subunit of protein phosphatase 1 that is regulated by insulin and shows differential tissue distribution in humans and rodents. / FEBS J 2005, 272:1478-489. CrossRef
    39. Chrisman TD, Jordan JE, Exton JH: Purification of rat liver phosphorylase kinase. / J Biol Chem 1982, 257:10798-0804.
    40. Parker GJ, Koay A, Gilbert-Wilson R, Waddington LJ, Stapleton D: AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver. / Biochem Biophys Res Commun 2007, 362:811-15. CrossRef
    41. Steinberg GR, O’Neill HM, Dzamko NL, Galic S, Naim T, Koopman R, Jorgensen SB, Honeyman J, Hewitt K, Chen ZP: Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity. / J Biol Chem 2010, 285:37198-7209. CrossRef
    42. Koay A, Woodcroft B, Petrie EJ, Yue H, Emanuelle S, Bieri M, Bailey MF, Hargreaves M, Park JT, Park KH: AMPK beta subunits display isoform specific affinities for carbohydrates. / FEBS Lett 2010, 584:3499-503. CrossRef
    43. Smythe C, Watt P, Cohen P: Further studies on the role of glycogenin in glycogen biosynthesis. / Eur J Biochem 1990, 189:199-04. CrossRef
    44. Arad M, Maron BJ, Gorham JM, Johnson WH Jr, Saul JP, Perez-Atayde AR, Spirito P, Wright GB, Kanter RJ, Seidman CE, Seidman JG: Glycogen storage diseases presenting as hypertrophic cardiomyopathy. / N Engl J Med 2005, 352:362-72. CrossRef
    45. Kotoulas OB, Kalamidas SA, Kondomerkos DJ: Glycogen autophagy in glucose homeostasis. / Pathol Res Pract 2006, 202:631-38. CrossRef
    46. Armstrong CG, Browne GJ, Cohen P, Cohen PT: PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phosphatase 1. / FEBS Lett 1997, 418:210-14. CrossRef
    47. Printen JA, Brady MJ, Saltiel AR: PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. / Science 1997, 275:1475-478. CrossRef
    48. Brady MJ, Saltiel AR: The role of protein phosphatase-1 in insulin action. / Recent Prog Horm Res 2001, 56:157-73. CrossRef
    49. Greenberg CC, Danos AM, Brady MJ: Central role for protein targeting to glycogen in the maintenance of cellular glycogen stores in 3T3-L1 adipocytes. / Mol Cell Biol 2006, 26:334-42. CrossRef
    50. Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR: PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. / J Clin Invest 2003, 111:1423-432.
    51. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL: RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. / Mol Cell 2007, 25:207-17. CrossRef
    52. Nilsson J, Sengupta J, Frank J, Nissen P: Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. / EMBO Rep 2004, 5:1137-141. CrossRef
    53. Pozuelo Rubio M, Geraghty KM, Wong BHC, Wood NT, Campbell DG, Morrice N, MacKintosh C: 14--3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. / Biochem J 2004, 379:395-08. CrossRef
    54. Mackintosh C: Dynamic interactions between 14--3 proteins and phosphoproteins regulate diverse cellular processes. / Biochem J 2004, 381:329-42. CrossRef
    55. Insenser M, Montes-Nieto R, Vilarrasa N, Lecube A, Simo R, Vendrell J, Escobar-Morreale HF: A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity. / Mol Cell Endocrinol 2012, 363:10-9. CrossRef
    56. Hoskins AA, Moore MJ: The spliceosome: a flexible, reversible macromolecular machine. / Trends Biochem Sci 2012, 37:179-88. CrossRef
    57. Yang J, Kickhoefer VA, Ng BC, Gopal A, Bentolila LA, John S, Tolbert SH, Rome LH: Vaults are dynamically unconstrained cytoplasmic nanoparticles capable of half vault exchange. / ACS Nano 2010, 4:7229-240. CrossRef
    58. Rybicka K: Binding of glycosomes to endoplasmic reticulum and to intermediate filaments in cardiac conduction fibers. / J Histochem Cytochem 1981, 29:553-60. CrossRef
    59. Garcia-Rocha M, Roca A, De La Iglesia N, Baba O, Fernandez-Novell JM, Ferrer JC, Guinovart JJ: Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. / Biochem J 2001, 357:17-4. CrossRef
    60. Bouju S, Lignon MF, Pietu G, Le Cunff M, Leger JJ, Auffray C, Dechesne CA: Molecular cloning and functional expression of a novel human gene encoding two 41-3?kDa skeletal muscle internal membrane proteins. / Biochem J 1998,335(Pt 3):549-56.
    61. Garduno E, Nogues M, Merino JM, Gutierrez-Merino C, Henao F: The content of glycogen phosphorylase and glycogen in preparations of sarcoplasmic reticulum-glycogenolytic complex is enhanced in diabetic rat skeletal muscle. / Diabetologia 2001, 44:1238-246. CrossRef
    62. Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, Graham TE: Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. / J Appl Physiol 2002, 93:1598-607.
    63. Jiang S, Wells CD, Roach PJ: Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. / Biochem Biophys Res Commun 2011, 413:420-25. CrossRef
    64. Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ: Starch Binding Domain-containing Protein 1/Genethonin 1 Is a Novel Participant in Glycogen Metabolism. / J Biol Chem 2010, 285:34960-4971. CrossRef
    65. Kleppe R, Martinez A, Doskeland SO, Haavik J: The 14--3 proteins in regulation of cellular metabolism. / Semin Cell Dev Biol 2011, 22:713-19. CrossRef
    66. Insenser M, Montes-Nieto R, Vilarrasa N, Lecube A, Simo R, Vendrell J, Escobar-Morreale HF: A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity. / Mol Cell Endocrinol 2012, 363:10-9. CrossRef
    67. Marshall S, Nadeau O, Yamasaki K: Glucosamine-induced Activation of Glycogen Biosynthesis in Isolated Adipocytes: EVIDENCE FOR A RAPID ALLOSTERIC CONTROL MECHANISM WITHIN THE HEXOSAMINE BIOSYNTHESIS PATHWAY. / J Biol Chem 2005, 280:11018-1024. CrossRef
    68. Bradshaw RA, Burlingame AL, Carr S, Aebersold R: Reporting protein identification data: the next generation of guidelines. / Mol Cell Proteomics 2006, 5:787-88. CrossRef
  • 作者单位:David Stapleton (1)
    Chad Nelson (2)
    Krishna Parsawar (2)
    Marcelo Flores-Opazo (1)
    Donald McClain (3)
    Glendon Parker (3) (4)

    1. Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
    2. Mass Spectrometry and Proteomics Core Facility, University of Utah, Rm 5C124 SOM, 30?N 1900 E, Salt Lake City, Utah, 84132, USA
    3. University of Utah School of Medicine, Rm 4C464B SOM, 30?N 1900 E, Salt Lake City, Utah, 84132, USA
    4. Department of Biology, Utah Valley University, 800 West University Parkway, Orem, UT, 801-863-6907, USA
文摘
Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700