用户名: 密码: 验证码:
The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal
详细信息    查看全文
  • 作者:Pawan Kumar Shahi (1)
    Seok Choi (1)
    Dong Chuan Zuo (1)
    Man Yoo Kim (2)
    Chan Guk Park (2)
    Young Dae Kim (2)
    Jun Lee (2)
    Kyu Joo Park (3)
    Insuk So (4)
    Jae Yeoul Jun (1)
  • 关键词:Hyperpolarization ; activated cyclic nucleotide channels ; Interstitial cells of Cajal ; Pacemaker activity ; cAMP ; Colon
  • 刊名:Journal of Gastroenterology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:49
  • 期:6
  • 页码:1001-1010
  • 全文大小:
  • 参考文献:1. Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med. 1998;4:848鈥?1. CrossRef
    2. Ward SM, Sanders KM, Hirst GD. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil. 2004;16:112鈥?. CrossRef
    3. Won KJ, Sanders KM, Ward SM. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci USA. 2005;102:14913鈥?. CrossRef
    4. Szurszewski JH. Electrical basis for gastrointestinal motility. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York: Raven Press; 1987. p. 383鈥?22.
    5. Der-Silaphet T, Malysz J, Hagel S, Larry Arsenault A, Huizinga JD. Interstitial cells of cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology. 1998;114:724鈥?6. CrossRef
    6. Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, et al. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol. 2000;525:355鈥?1. CrossRef
    7. Malysz J, Donnelly G, Huizinga JD. Regulation of slow wave frequency by IP(3)-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol. 2001;280:G439鈥?8.
    8. Sanders KM, 脰rd枚g T, Koh SD, Ward SM. A novel pacemaker mechanism drives gastrointestinal rhythmicity. News Physiol Sci. 2000;15:291鈥?.
    9. Walker RL, Koh SD, Sergeant GP, Sanders KM, Horowitz B. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol. 2002;283:C1637鈥?5. CrossRef
    10. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, et al. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology. 2005;129:1504鈥?7. CrossRef
    11. Tokutomi N, Maeda H, Tokutomi Y, Sato D, Sugita M, Nishikawa S, et al. Rhythmic Cl鈭?/sup> current and physiological roles of the intestinal c-kit-positive cells. Pfl疟gers Arch. 1995;431:169鈥?7. CrossRef
    12. Huizinga JD, Zhu Y, Ye J, Molleman A. High-conductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology. 2002;123:1627鈥?6. CrossRef
    13. Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1370鈥?1. CrossRef
    14. Hwang SJ, Blair PJ, Britton FC, O鈥橠riscoll KE, Hennig G, Bayguinov YR, et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009;587:4887鈥?04. CrossRef
    15. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322:590鈥?. CrossRef
    16. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134:1019鈥?9. CrossRef
    17. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455:1210鈥?. CrossRef
    18. Stanich JE, Gibbons SJ, Eisenman ST, Bardsley MR, Rock JR, Harfe BD, et al. Ano1 as a regulator of proliferation. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1044鈥?1. CrossRef
    19. Nakayama S, Torihashi S. Spontaneous rhythmicity in cultured cell clusters isolated from mouse small intestine. Jpn J Physiol. 2002;52:217鈥?7. CrossRef
    20. Kito Y, Suzuki H. Effects of temperature on pacemaker potentials in the mouse small intestine. Pfl疟gers Arch. 2007;454:263鈥?5. CrossRef
    21. Huizinga JD, Farraway L, Den Hertog A. Effect of voltage and cyclic AMP on frequency of slow-wave-type action potentials in canine colon smooth muscle. J Physiol. 1991;442:31鈥?5.
    22. Liu LW, Thuneberg L, Huizinga JD. Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colonic pacemaker frequency. J Pharmacol Exp Ther. 1995;275:1058鈥?8.
    23. Sanders KM. G protein-coupled receptors in gastrointestinal physiology IV. Neural regulation of gastrointestinal smooth muscle. Am J Physiol. 1998;275:G1鈥?.
    24. DiFrancesco D. The contribution of the 鈥榩acemaker鈥?current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol. 1991;434:23鈥?0.
    25. Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996;58:299鈥?27. CrossRef
    26. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991;351:145鈥?. CrossRef
    27. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474鈥?. CrossRef
    28. Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82:769鈥?24.
    29. Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker (鈥渇unny鈥? current. Pharmacol Ther. 2005;107:59鈥?9. CrossRef
    30. Zong X, Eckert C, Yuan H, Wahl-Schott C, Abicht H, Fang L, et al. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. J Biol Chem. 2005;280:34224鈥?2. CrossRef
    31. Sanders KM, Koh SD, Ward SM. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307鈥?3. CrossRef
    32. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89:847鈥?5. CrossRef
    33. Verkerk AO, van Ginneken AC, Wilders R. Pacemaker activity of the human sinoatrial node: role of the hyperpolarization-activated current, I(f). Int J Cardiol. 2009;132:318鈥?6. CrossRef
    34. Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461鈥?0. CrossRef
    35. Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75:725鈥?8.
    36. Craven KB, Zagotta WN. CNG and HCN channels: two peas, one pod. Annu Rev Physiol. 2006;68:375鈥?01. CrossRef
    37. Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol. 2003;65:453鈥?0. CrossRef
    38. Knaus A, Zong X, Beetz N, Jahns R, Lohse MJ, Biel M, et al. Direct inhibition of cardiac hyperpolarization-activated cyclic nucleotide-gated pacemaker channels by clonidine. Circulation. 2007;115:872鈥?0. CrossRef
    39. Yu HG, Lu Z, Pan Z, Cohen IS. Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels. Pfl疟gers Arch. 2004;447:392鈥?00. CrossRef
    40. Kretschmannova K, Gonzalez-Iglesias AE, Tomi膰 M, Stojilkovic SS. Dependence of hyperpolarisation-activated cyclic nucleotide-gated channel activity on basal cyclic adenosine monophosphate production in spontaneously firing GH3 cells. J Neuroendocrinol. 2006;18:484鈥?3. CrossRef
    41. Herrmann S, Stieber J, Ludwig A. Pathophysiology of HCN channels. Pfl疟gers Arch. 2007;454:517鈥?2. CrossRef
    42. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol. 2005;562:223鈥?4. CrossRef
    43. Xiao J, Nguyen TV, Ngui K, Strijbos PJ, Selmer IS, Neylon CB, et al. Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system. Neuroscience. 2004;129:603鈥?4. CrossRef
    44. Yang S, Xiong CJ, Sun HM, Li XS, Zhang GQ, Wu B, et al. The distribution of HCN2-positive cells in the gastrointestinal tract of mice. J Anat. 2012;221:303鈥?0. CrossRef
  • 作者单位:Pawan Kumar Shahi (1)
    Seok Choi (1)
    Dong Chuan Zuo (1)
    Man Yoo Kim (2)
    Chan Guk Park (2)
    Young Dae Kim (2)
    Jun Lee (2)
    Kyu Joo Park (3)
    Insuk So (4)
    Jae Yeoul Jun (1)

    1. Department of Physiology, College of Medicine, Chosun University, Sesuk-dong, Dong-gu, Gwangju, 501-759, Korea
    2. Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
    3. Department of Surgery, Seoul National University Hospital, Seoul, Korea
    4. Department of Physiology and Biophysics, College of Medicine, Seoul National University, Seoul, Korea
  • ISSN:1435-5922
文摘
Background Hyperpolarization-activated cyclic nucleotide (HCN) channels are pacemaker channels that regulate heart rate and neuronal rhythm in spontaneously active cardiac and neuronal cells. Interstitial cells of Cajal (ICCs) are also spontaneously active pacemaker cells in the gastrointestinal tract. Here, we investigated the existence of HCN channel and its role on pacemaker activity in colonic ICCs. Methods We performed whole-cell patch clamp, RT-PCR, and Ca2+-imaging in cultured ICCs from mouse mid colon. Results SQ-22536 and dideoxyadenosine (adenylate cyclase inhibitors) decreased the frequency of pacemaker potentials, whereas both rolipram (cAMP-specific phosphodiesterase inhibitor) and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. CsCl, ZD7288, zatebradine, clonidine (HCN channel blockers), and genistein (a tyrosine kinase inhibitor) suppressed the pacemaker activity. RT-PCR revealed expression of HCN1 and HCN3 channels in c-kit and Ano1 positive colonic ICCs. In recordings of spontaneous intracellular Ca2+ [Ca2+]i oscillations, rolipram and 8-bromo-cAMP increased [Ca2+]i oscillations, whereas SQ-22536, CsCl, ZD7288, and genistein decreased [Ca2+]i oscillations. Conclusions HCN channels in colonic ICCs are tonically activated by basal cAMP production and participate in regulation of pacemaking activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700