用户名: 密码: 验证码:
Post-transcriptional regulation of long noncoding RNAs in cancer
详细信息    查看全文
  • 作者:Xuefei Shi (1)
    Ming Sun (2)
    Ying Wu (1)
    Yanwen Yao (1)
    Hongbing Liu (1)
    Guannan Wu (1)
    Dongmei Yuan (1)
    Yong Song (1)

    1. Department of Respiratory Medicine
    ; Jinling Hospital ; Nanjing University School of Medicine ; 305 East Zhongshan Road ; Nanjing ; 210002 ; Jiangsu Province ; China
    2. Department of Biochemistry and Molecular Biology
    ; Nanjing Medical University ; Nanjing ; China
  • 关键词:Long noncoding RNA ; Mechanism ; Post ; transcriptional regulation ; Cancer
  • 刊名:Tumor Biology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:36
  • 期:2
  • 页码:503-513
  • 全文大小:3,478 KB
  • 参考文献:1. Derrien, T, Johnson, R, Bussotti, G, Tanzer, A, Djebali, S, Tilgner, H (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: pp. 1775-89
    2. Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J (2001) Initial sequencing and analysis of the human genome. Nature 409: pp. 860-921
    3. Stein, LD (2004) Human genome: end of the beginning. Nature 431: pp. 915-6
    4. Costa, FF (2010) Non-coding RNAs: meet thy masters. BioEssays : News Rev Mol Cell Dev Biol 32: pp. 599-608
    5. Djebali, S, Davis, CA, Merkel, A, Dobin, A, Lassmann, T, Mortazavi, A (2012) Landscape of transcription in human cells. Nature 489: pp. 101-8
    6. Gibb, EA, Brown, CJ, Lam, WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10: pp. 38
    7. Mercer, TR, Dinger, ME, Mattick, JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10: pp. 155-9
    8. Carthew, RW, Sontheimer, EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136: pp. 642-55
    9. Mo, YY (2012) MicroRNA regulatory networks and human disease. Cell Mol Life Sci : CMLS 69: pp. 3529-31
    10. Wang, KC, Chang, HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43: pp. 904-14
    11. Wilusz, JE, Sunwoo, H, Spector, DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23: pp. 1494-504
    12. Brannan, CI, Dees, EC, Ingram, RS, Tilghman, SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10: pp. 28-36
    13. Brockdorff, N, Ashworth, A, Kay, GF, McCabe, VM, Norris, DP, Cooper, PJ (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71: pp. 515-26
    14. Ulitsky, I, Shkumatava, A, Jan, CH, Sive, H, Bartel, DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147: pp. 1537-50
    15. Kornienko, AE, Guenzl, PM, Barlow, DP, Pauler, FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11: pp. 59
    16. Tuck, AC, Tollervey, D (2013) A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154: pp. 996-1009
    17. Ponting, CP, Oliver, PL, Reik, W (2009) Evolution and functions of long noncoding RNAs. Cell 136: pp. 629-41
    18. Gutschner, T, Diederichs, S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9: pp. 703-19
    19. Guttman, M, Amit, I, Garber, M, French, C, Lin, MF, Feldser, D (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458: pp. 223-7
    20. Mercer, TR, Dinger, ME, Sunkin, SM, Mehler, MF, Mattick, JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105: pp. 716-21
    21. Ravasi, T, Suzuki, H, Pang, KC, Katayama, S, Furuno, M, Okunishi, R (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16: pp. 11-9
    22. Moran, VA, Perera, RJ, Khalil, AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40: pp. 6391-400
    23. Zhao, J, Sun, BK, Erwin, JA, Song, JJ, Lee, JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science (New York, NY) 322: pp. 750-6
    24. Tsai, MC, Manor, O, Wan, Y, Mosammaparast, N, Wang, JK, Lan, F (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science (New York, NY) 329: pp. 689-93
    25. Ambros, V (2004) The functions of animal microRNAs. Nature 431: pp. 350-5
    26. Reinhart, BJ, Weinstein, EG, Rhoades, MW, Bartel, B, Bartel, DP (2002) MicroRNAs in plants. Genes Dev 16: pp. 1616-26
    27. Alvarez-Garcia, I, Miska, EA (2005) MicroRNA functions in animal development and human disease. Development (Cambridge, England) 132: pp. 4653-62
    28. Miska, EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15: pp. 563-8
    29. Baehrecke, EH (2003) miRNAs: micro managers of programmed cell death. Curr Biol : CB 13: pp. R473-5
    30. Fuchs, Y, Steller, H (2011) Programmed cell death in animal development and disease. Cell 147: pp. 742-58
    31. Caldas, C, Brenton, JD (2005) Sizing up miRNAs as cancer genes. Nat Med 11: pp. 712-4
    32. Shenouda, SK, Alahari, SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor?. Cancer Metastasis Rev 28: pp. 369-78
    33. Chen, CZ, Li, L, Lodish, HF, Bartel, DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, NY) 303: pp. 83-6
    34. Havelange, V, Garzon, R (2010) MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol 85: pp. 935-42
    35. Seitz, H (2009) Redefining microRNA targets. Curr Biol : CB 19: pp. 870-3
    36. Sarver, AL, Subramanian, S (2012) Competing endogenous RNA database. Bioinformation 8: pp. 731-3
    37. Cesana, M, Daley, GQ (2013) Deciphering the rules of ceRNA networks. Proc Natl Acad Sci U S A 110: pp. 7112-3
    38. Cesana, M, Cacchiarelli, D, Legnini, I, Santini, T, Sthandier, O, Chinappi, M (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147: pp. 358-69
    39. Franco-Zorrilla, JM, Valli, A, Todesco, M, Mateos, I, Puga, MI, Rubio-Somoza, I (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39: pp. 1033-7
    40. Poliseno, L, Salmena, L, Zhang, J, Carver, B, Haveman, WJ, Pandolfi, PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: pp. 1033-8
    41. Salmena, L, Poliseno, L, Tay, Y, Kats, L, Pandolfi, PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 146: pp. 353-8
    42. Matouk, IJ, Abbasi, I, Hochberg, A, Galun, E, Dweik, H, Akkawi, M (2009) Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol 21: pp. 688-92
    43. Panzitt, K, Tschernatsch, MM, Guelly, C, Moustafa, T, Stradner, M, Strohmaier, HM (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132: pp. 330-42
    44. Wang, J, Liu, X, Wu, H, Ni, P, Gu, Z, Qiao, Y (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38: pp. 5366-83
    45. Jendrzejewski, J, He, H, Radomska, HS, Li, W, Tomsic, J, Liyanarachchi, S (2012) The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci U S A 109: pp. 8646-51
    46. Fan, M, Li, X, Jiang, W, Huang, Y, Li, J, Wang, Z (2013) A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med 5: pp. 1143-6
    47. Liu, Q, Huang, J, Zhou, N, Zhang, Z, Zhang, A, Lu, Z (2013) LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 41: pp. 4976-87
    48. Qi, P, Xu, MD, Ni, SJ, Huang, D, Wei, P, Tan, C (2013) Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J Transl Med 11: pp. 122
    49. Johnsson, P, Ackley, A, Vidarsdottir, L, Lui, WO, Corcoran, M, Grander, D (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20: pp. 440-6
    50. Poliseno, L, Haimovic, A, Christos, PJ, Vega, YSMEC, Shapiro, R, Pavlick, A (2011) Deletion of PTENP1 pseudogene in human melanoma. J Investig Dermatol 131: pp. 2497-500
    51. Wang, L, Guo, ZY, Zhang, R, Xin, B, Chen, R, Zhao, J (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34: pp. 1773-81
    52. Ben-Dov, C, Hartmann, B, Lundgren, J, Valcarcel, J (2008) Genome-wide analysis of alternative pre-mRNA splicing. J Biol Chem 283: pp. 1229-33
    53. Blencowe, BJ (2006) Alternative splicing: new insights from global analyses. Cell 126: pp. 37-47
    54. Matlin, AJ, Clark, F, Smith, CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6: pp. 386-98
    55. Pan, Q, Shai, O, Lee, LJ, Frey, BJ, Blencowe, BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40: pp. 1413-5
    56. Wang, ET, Sandberg, R, Luo, S, Khrebtukova, I, Zhang, L, Mayr, C (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456: pp. 470-6
    57. Long, JC, Caceres, JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417: pp. 15-27
    58. Luco, RF, Misteli, T (2011) More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev 21: pp. 366-72
    59. Bernard, D, Prasanth, KV, Tripathi, V, Colasse, S, Nakamura, T, Xuan, Z (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29: pp. 3082-93
    60. Ji, P, Diederichs, S, Wang, W, Boing, S, Metzger, R, Schneider, PM (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22: pp. 8031-41
    61. Tripathi, V, Ellis, JD, Shen, Z, Song, DY, Pan, Q, Watt, AT (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39: pp. 925-38
    62. Lin, R, Roychowdhury-Saha, M, Black, C, Watt, AT, Marcusson, EG, Freier, SM (2011) Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett 585: pp. 671-6
    63. Tano, K, Mizuno, R, Okada, T, Rakwal, R, Shibato, J, Masuo, Y (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 584: pp. 4575-80
    64. Anko, ML, Muller-McNicoll, M, Brandl, H, Curk, T, Gorup, C, Henry, I (2012) The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol 13: pp. R17
    65. Polymenidou, M, Lagier-Tourenne, C, Hutt, KR, Huelga, SC, Moran, J, Liang, TY (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14: pp. 459-68
    66. Sanford, JR, Wang, X, Mort, M, Vanduyn, N, Cooper, DN, Mooney, SD (2009) Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 19: pp. 381-94
    67. Schor, IE, Lleres, D, Risso, GJ, Pawellek, A, Ule, J, Lamond, AI (2012) Perturbation of chromatin structure globally affects localization and recruitment of splicing factors. PLoS One 7: pp. e48084
    68. Tollervey, JR, Curk, T, Rogelj, B, Briese, M, Cereda, M, Kayikci, M (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14: pp. 452-8
    69. Lin, R, Maeda, S, Liu, C, Karin, M, Edgington, TS (2007) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26: pp. 851-8
    70. Perez, DS, Hoage, TR, Pritchett, JR, Ducharme-Smith, AL, Halling, ML, Ganapathiraju, SC (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17: pp. 642-55
    71. Yamada, K, Kano, J, Tsunoda, H, Yoshikawa, H, Okubo, C, Ishiyama, T (2006) Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci 97: pp. 106-12
    72. Schmidt, LH, Spieker, T, Koschmieder, S, Schaffers, S, Humberg, J, Jungen, D (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 6: pp. 1984-92
    73. Tripathi, V, Shen, Z, Chakraborty, A, Giri, S, Freier, SM, Wu, X (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9: pp. e1003368
    74. Lavorgna, G, Dahary, D, Lehner, B, Sorek, R, Sanderson, CM, Casari, G (2004) In search of antisense. Trends Biochem Sci 29: pp. 88-94
    75. Li, K, Ramchandran, R (2010) Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget 1: pp. 447-52
    76. Ling, MH, Ban, Y, Wen, H, Wang, SM, Ge, SX (2013) Conserved expression of natural antisense transcripts in mammals. BMC Genomics 14: pp. 243
    77. Werner, A (2013) Biological functions of natural antisense transcripts. BMC Biol 11: pp. 31
    78. Beltran, M, Puig, I, Pena, C, Garcia, JM, Alvarez, AB, Pena, R (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22: pp. 756-69
    79. Bertozzi, D, Iurlaro, R, Sordet, O, Marinello, J, Zaffaroni, N, Capranico, G (2011) Characterization of novel antisense HIF-1alpha transcripts in human cancers. Cell Cycle (Georgetown, Tex) 10: pp. 3189-97
    80. Cayre, A, Rossignol, F, Clottes, E, Penault-Llorca, F (2003) aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res : BCR 5: pp. R223-30
    81. Rossignol, F, Vache, C, Clottes, E (2002) Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299: pp. 135-40
    82. Fornace, AJ, Alamo, I, Hollander, MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A 85: pp. 8800-4
    83. Hollander, MC, Alamo, I, Fornace, AJ (1996) A novel DNA damage-inducible transcript, gadd7, inhibits cell growth, but lacks a protein product. Nucleic Acids Res 24: pp. 1589-93
    84. Jackman, J, Alamo, I, Fornace, AJ (1994) Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res 54: pp. 5656-62
    85. Liu, X, Li, D, Zhang, W, Guo, M, Zhan, Q (2012) Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31: pp. 4415-27
    86. Kim, YK, Furic, L, Desgroseillers, L, Maquat, LE (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3鈥睻TRs so as to elicit mRNA decay. Cell 120: pp. 195-208
    87. Kim, YK, Furic, L, Parisien, M, Major, F, DesGroseillers, L, Maquat, LE (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 26: pp. 2670-81
    88. Gong, C, Maquat, LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3鈥?UTRs via Alu elements. Nature 470: pp. 284-8
    89. Gong, C, Maquat, LE (2011) 鈥淎lu鈥?strious long ncRNAs and their role in shortening mRNA half-lives. Cell Cycle (Georgetown, Tex) 10: pp. 1882-3
    90. Kretz, M, Siprashvili, Z, Chu, C, Webster, DE, Zehnder, A, Qu, K (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493: pp. 231-5
    91. Roy, B, Jacobson, A (2013) The intimate relationships of mRNA decay and translation. Trends Genet : TIG 29: pp. 691-9
    92. Aktas, BH, Qiao, Y, Ozdelen, E, Schubert, R, Sevinc, S, Harbinski, F (2013) Small-molecule targeting of translation initiation for cancer therapy. Oncotarget 4: pp. 1606-17
    93. Cohen, N, Sharma, M, Kentsis, A, Perez, JM, Strudwick, S, Borden, KL (2001) PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 20: pp. 4547-59
    94. Benedetti, A, Graff, JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23: pp. 3189-99
    95. Graff, JR, Zimmer, SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20: pp. 265-73
    96. Huarte, M, Guttman, M, Feldser, D, Garber, M, Koziol, MJ, Kenzelmann-Broz, D (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142: pp. 409-19
    97. Yoon, JH, Abdelmohsen, K, Srikantan, S, Yang, X, Martindale, JL, De, S (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47: pp. 648-55
    98. Wilusz, CJ, Wilusz, J (2012) HuR and translation鈥攖he missing linc(RNA). Mol Cell 47: pp. 495-6
    99. Carrieri, C, Cimatti, L, Biagioli, M, Beugnet, A, Zucchelli, S, Fedele, S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491: pp. 454-7
    100. Huarte, M (2013) LncRNAs have a say in protein translation. Cell Res 23: pp. 449-51
    101. Orom, UA, Derrien, T, Beringer, M, Gumireddy, K, Gardini, A, Bussotti, G (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143: pp. 46-58
    102. Gumireddy, K, Li, A, Yan, J, Setoyama, T, Johannes, GJ, Orom, UA (2013) Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 32: pp. 2672-84
    103. Wapinski, O, Chang, HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21: pp. 354-61
    104. Yang, F, Huo, XS, Yuan, SX, Zhang, L, Zhou, WP, Wang, F (2013) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 49: pp. 1083-96
    105. Guo, F, Li, Y, Liu, Y, Wang, J, Li, G (2010) Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin 42: pp. 224-9
    106. Zhai, H, Fesler, A, Schee, K, Fodstad, O, Flatmark, K, Ju, J (2013) Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer 12: pp. 261-6
    107. Keniry, A, Oxley, D, Monnier, P, Kyba, M, Dandolo, L, Smits, G (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14: pp. 659-65
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
It is a great surprise that the genomes of mammals and other eukaryotes harbor many thousands of long noncoding RNAs (lncRNAs). Although these long noncoding transcripts were once considered to be simply transcriptional noise or cloning artifacts, multiple studies have suggested that lncRNAs are emerging as new players in diverse human diseases, especially in cancer, and that the molecular mechanisms of lncRNAs need to be elucidated. More recently, evidence has begun to accumulate describing the complex post-transcriptional regulation in which lncRNAs are involved. It was reported that lncRNAs can be implicated in degradation, translation, pre-messenger RNA (mRNA) splicing, and protein activities and even as microRNAs (miRNAs) sponges in both a sequence-dependent and sequence-independent manner. In this review, we present an updated vision of lncRNAs and summarize the mechanism of post-transcriptional regulation by lncRNAs, providing new insight into the functional cellular roles that they may play in human diseases, with a particular focus on cancers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700