用户名: 密码: 验证码:
Characterization of a Putative Stereoselective Oxidoreductase from Gluconobacter oxydans and Its Application in Producing Ethyl (R)-4-Chloro-3-Hydroxybutanoate Ester
详细信息    查看全文
  • 作者:Xu Liu (1)
    Rong Chen (1) (2)
    Zhongwei Yang (1)
    Jiale Wang (1)
    Jinping Lin (1)
    Dongzhi Wei (1)
  • 关键词:Gluconobacter oxydans ; Oxidoreductase ; Ethyl (R) ; 4 ; chloro ; 3 ; hydroxybutanoate ester
  • 刊名:Molecular Biotechnology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:56
  • 期:4
  • 页码:285-295
  • 全文大小:821 KB
  • 参考文献:1. Patel, R. N. (2001). Enzymatic synthesis of chiral intermediates for drug development. / Advanced Synthesis and Catalysis, / 343, 527-46. CrossRef
    2. Dau?mann, T., Rosen, T. C., & Dünkelmann, P. (2006). Oxidoreductases and hydroxynitrilase lyases: complementary enzymatic technologies for chiral alcohols. / Engineering in Life Sciences, / 6, 125-29. CrossRef
    3. Kallberg, Y., Oppermann, O., & Persson, B. (2010). Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. / FEBS Journal, / 277, 2375-386. CrossRef
    4. Kavanagh, K. L., J?rnvall, H., Persson, B., & Oppermann, U. (2008). The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. / Cellular and Molecular Life Sciences, / 65, 3895-906. CrossRef
    5. Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., et al. (2009). The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. / Chemico-Biological Interactions, / 178, 94-8. CrossRef
    6. Matsuda, T., Yamanaka, R., & Nakamura, K. (2009). Recent progress in biocatalysis for asymmetric oxidation and reduction. / Tetrahedron Asymmetry, / 20, 513-57. CrossRef
    7. Kawano, S., Yano, M., Hasegawa, J., & Yasohara, Y. (2011). Purification and characterization of an NADH-dependent alcohol dehydrogenase from / Candida maris for the synthesis of optically active 1-(pyridyl)ethanol derivatives. / Bioscience, Biotechnology, and Biochemistry, / 75, 1055-060. CrossRef
    8. Yamamoto, H., Matsuyama, A., & Kobayashi, Y. (2002). Synthesis of ethyl ( / R)-4-chloro-3-hydroxybutanoate with recombinant / Escherichia coli cells expressing ( / S)-specific secondary alcohol dehydrogenase. / Bioscience, Biotechnology, and Biochemistry, / 66(4), 481. CrossRef
    9. Ye, Q., Ouyang, P., & Ying, H. (2011). A review—biosynthesis of optically pure ethyl ( / S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives. / Applied Microbiology and Biotechnology, / 89, 513-22. CrossRef
    10. Kasai, N., & Sakaguchi, K. (1992). An efficient synthesis of ( / R)-carnitine. / Tetrahedron Letters, / 33, 1211-212. CrossRef
    11. Teodosiu, D. C., Kirby, D. P. J., Short, A. H., Burden, R. P., Morgan, A. G., & Greenhaff, P. L. (1996). Free and esterified carnitine in continuous ambulatory peritoneal dialysis patients. / Kidney International, / 49, 158-62. CrossRef
    12. Wang, G., & Hollingsworth, R. I. (1999). Synthetic routes to l -carnitine and l -gamma-amino-beta-hydroxybutyricacid from ( / S)-3-hydroxybutyrolactone by functional group priority switching. / Tetrahedron Asymmetry, / 10, 1895-901. CrossRef
    13. Matsuyama, A., Yamamoto, H., & Kobayashi, Y. (2002). Practical application of recombinant whole-cell biocatalysts for the manufacturing of pharmaceutical intermediates such as chiral alcohols. / Organic Process Research and Development, / 6, 558-61. CrossRef
    14. Kataoka, M., Rohani, L. P. S., Yamamoto, K., Wada, M., Kawabata, H., Kita, K., et al. (1997). Enzymatic production of ethyl ( / R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an / Escherichia coli transformant expressing the aldehyde reductase gene from yeast. / Applied Microbiology and Biotechnology, / 48, 699-03. CrossRef
    15. Yasohara, Y., Kizaki, N., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2000). Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from / Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate. / Bioscience, Biotechnology, and Biochemistry, / 64, 1430-436. CrossRef
    16. Yamamoto, H., Mitsuhashi, K., Kimoto, N., Matsuyama, A., Esaki, N., & Kobayashi, Y. (2004). A novel NADH-dependent carbonyl reductase from / Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl ( / S)-4-chloro-3-hydroxybutanoate. / Bioscience, Biotechnology, and Biochemistry, / 68, 638-49. CrossRef
    17. Kita, K., Kataoka, M., & Shimizu, S. (1999). Diversity of 4-chloroacetoacetate ethyl ester-reducing enzymes in yeasts and their application to chiral alcohol synthesis. / Bioscience and Bioengineering, / 88, 591-98. CrossRef
    18. Shimizu, S., Kataoka, M., & Kita, K. (1998). Chiral alcohol synthesis with yeast carbonyl reductases. / Journal of Molecular Catalysis B, / 5, 321-25. CrossRef
    19. Xie, Y., Xu, J. H., & Xu, Y. (2010). Isolation of a Bacillus strain producing ketone reductase with high substrate tolerance. / Bioresource Technology, / 101, 1054-059. CrossRef
    20. Ni, Y., Li, C. X., Wang, L. J., Zhang, J., & Xu, J. H. (2011). Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. / Organic and Biomolecular Chemistry, / 9, 5463-468. CrossRef
    21. Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., & Ehrenreih, A. (2005). Complete genome sequence of the acetic bacterium / Gluconobacter oxydans. / Nature Biotechnology, / 23, 195-00. CrossRef
    22. Schweiger, P., & Deppenmeier, U. (2010). Analysis of aldehyde reductase from / Gluconobacter oxydans 621H. / Applied Microbiology and Biotechnology, / 85, 1025-031. CrossRef
    23. Cao, H., Ye, Q., Zang, G., Yan, M., Wang, Y., Zhang, Y., et al. (2011). Purification and characterization of a novel NADH-dependent carbonyl reductase from / Pichia stipitis involved in biosynthesis of optically pure ethyl ( / S)-4-chloro-3-hydroxybutanoate. / Bioresource Technology, / 102, 1733-739. CrossRef
    24. Otagiri, M., Ui, S., Takusagawa, Y., Ohtsuki, T., Kurisu, G., & Kusunoki, M. (2010). Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. / FEBS Letters, / 584, 219-23. CrossRef
    25. Hosaka, T., Ui, S., Ohtsuki, T., Mimura, A., Ohkuma, M., & Kudo, T. (2001). Characterization of the NADH-linked acetylacetoin reductase/2,3-butanediol dehydrogenase gene from / Bacillus cereus YUF-4. / Journal of Bioscience and Bioengineering, / 91, 539-44.
    26. Prelog, V. (1964). Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. / Pure and Applied Chemistry, / 9, 119-30. CrossRef
    27. Bisogno, F. R., Martínez, A. R., Rodríguez, C., Lavandera, I., Gonzalo, G., Pazmi?o, D. E. T., et al. (2010). Oxidoreductases working together: concurrent obtaining of valuable derivatives by employing the PIKAT method. / ChemCatChem, / 2, 946-49. CrossRef
    28. Ankati, H., Zhu, D., Yang, Y., Biehl, E. R., & Hua, L. (2009). Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis. / Journal of Organic Chemistry, / 74, 1658-662. CrossRef
    29. Nie, Y., Xiao, R., Xu, Y., & Montelione, G. T. (2011). Novel anti-Prelog stereospecific carbonyl reductases from / Candida parapsilosis for asymmetric reduction of prochiral ketones. / Organic and Biomolecular Chemistry, / 9, 4070-078. CrossRef
    30. Kataota, M., Sakai, H., Morikawa, T., Katoh, M., Miyoshi, T., Shimizu, S., et al. (1992). Characterization of aldehyde reductase of / Sporobolomyces salmonicolor. / Biochimica et Biophysica Acta, / 1122, 57-2. CrossRef
    31. Wada, M., Kawabata, H., Kataoka, M., Yasohara, Y., Noriyuki, K., Hasegawa, J., et al. (1999). Purification and characterization of an aldehyde reductase from / Candida magnoliae. / Journal of Molecular Catalysis B Enzymatic, / 6, 280-85. CrossRef
    32. Jing, K., Xu, Z., Liu, Y., Jiang, X., Peng, L., & Cen, P. (2005). Efficient production of recombinant aldehyde reductase and its application for asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl ( / R)-4-chloro-3-hydroxybutanoate. / Preparative Biochemistry and Biotechnology, / 35, 203-15. CrossRef
  • 作者单位:Xu Liu (1)
    Rong Chen (1) (2)
    Zhongwei Yang (1)
    Jiale Wang (1)
    Jinping Lin (1)
    Dongzhi Wei (1)

    1. State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311#, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
    2. Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, 310012, China
  • ISSN:1559-0305
文摘
A gene encoding an NADH-dependent short-chain dehydrogenase/reductase (gox2036) from Gluconobacter oxydans 621H was cloned and heterogeneously expressed in Escherichia coli. The protein (Gox2036) was purified to homogeneity and biochemically characterized. Gox2036 was a homotetramer with a subunit size of approximately 28?kDa. Gox2036 had a strict requirement for NAD+/NADH as the cofactor. Gox2036 displayed preference for oxidation of secondary alcohols and 2,3-diols as well as for reduction of α-diketones, hydroxy ketones, α-ketoesters, and β-ketoesters. However, Gox2036 was poorly active on 1,2-diols and acetoin and showed no activity on primary alcohols, polyols, and aldehydes. The optimum pH values for the oxidation and reduction reactions were 9 and 6, respectively. Gox2036 was highly selective in the reduction of various β-ketones and β-ketoesters. Among the substrates tested, ethyl 4-chloro acetoacetate was reduced to ethyl (R)-4-chloro-3-hydroxybutanoate ester with an excellent conversion yield of 96.9?% and optical purity of >99?% e.e. using an efficient in situ NADH-recycling system involving glucose and a glucose dehydrogenase from Bacillus subtilis (BsGDH).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700