用户名: 密码: 验证码:
Highly Stabilized Curcumin Nanoparticles Tested in an In Vitro Blood–Brain Barrier Model and in Alzheimer’s Disease Tg2576 Mice
详细信息    查看全文
  • 作者:Kwok Kin Cheng (1)
    Chin Fung Yeung (1)
    Shuk Wai Ho (1)
    Shing Fung Chow (1)
    Albert H. L. Chow (1)
    Larry Baum (1)
  • 关键词:Alzheimer’s disease ; behavior tests ; nanocurcumin ; oral route ; pharmacokinetic
  • 刊名:The AAPS Journal
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:15
  • 期:2
  • 页码:324-336
  • 全文大小:570KB
  • 参考文献:1. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2012;8:131-8. CrossRef
    2. Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology. 2003;226:315-6. CrossRef
    3. Lockhart A, Lamb JR, Osredkar T, Sue LI, Joyce JN, Ye L, / et al. PIB is a non-specific imaging marker of amyloid-beta (Aβ) peptide-related cerebral amyloidosis. Brain. 2007;130:2607-5. CrossRef
    4. Reinke AA, Gestwicki JE. Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des. 2007;70:206-5. CrossRef
    5. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, / et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid / in vivo. J Biol Chem. 2005;280:5892-01. CrossRef
    6. Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, / et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther. 2008;326:196-08. CrossRef
    7. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370-.
    8. Cheng A, Hsu C, Lin J, Hsu M, Ho Y, Shen T, / et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895-00.
    9. Toennesen HH, Karlsen J. Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z Lebensm Unters Forsch. 1985;180:402-. CrossRef
    10. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharmaceutics. 2007;4:807-8. CrossRef
    11. T?nnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244:127-5. CrossRef
    12. Liu A, Lou H, Zhao L, Fan P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal. 2006;40:720-. CrossRef
    13. Schranz JL. Coloring agents. Brit UK Pat Appl. 1984:5.
    14. Todd PH, Jr. Curcumin complexed on water-dispersible substrates. United States Patent. 1991;US4999205.
    15. Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, / et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One. 2012;7:e32616. CrossRef
    16. Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurcTM) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimer’s Dis. 2011;23:61-7.
    17. Tsai Y, Chien C, Lin L, Tsai T. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm. 2011;416:331-. CrossRef
    18. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, / et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity / in vitro and superior bioavailability / in vivo. Biochem Pharmacol. 2010;79:330-. CrossRef
    19. Gavi E, Rivautella L, Marchisio DL, Vanni M, Barresi AA, Baldi G. CFD modelling of nano-particle precipitation in confined impinging jet reactors. Chem Eng Res Design. 2007;85:735-4. CrossRef
    20. Gavi E, Marchisio DL, Barresi AA. CFD modelling and scale-up of confined impinging jet reactors. Chemical Engineering Science. 2007;62:2228-1. CrossRef
    21. Liu Y, Fox RO. CFD predictions for chemical processing in a confined impinging-jets reactor. AIChE J. 2006;52:731-4. CrossRef
    22. Liu Y, Cheng C, Liu Y, Prud’homme RK, Fox RO. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering Science. 2008;63:2829-2. CrossRef
    23. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, / et al. / In vitro models for the blood–brain barrier. Toxicology in Vitro. 2005;19:299-34. CrossRef
    24. Zhou S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev. 2004;36:57-04. CrossRef
    25. Zhang C, Kwan P, Zuo Z, Baum L. / In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86:899-05. CrossRef
    26. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, / et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99-03. CrossRef
    27. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG. Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2001;21:372-1.
    28. Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323:1123-. CrossRef
    29. Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55:495-03. CrossRef
    30. Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, Ghosh A, / et al. Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact. 2012;195:206-4. CrossRef
    31. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223-0. CrossRef
    32. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, / et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin-: a novel strategy for human cancer therapy. Journal of Nanobiotechnology. 2007;5:3. CrossRef
    33. Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10:141-2. CrossRef
    34. Yin Win K, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713-2. CrossRef
    35. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13:1838-5. CrossRef
    36. Studart AR, Amstad E, Gauckler LJ. Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir. 2007;23:1081-0. CrossRef
    37. Gaucher G, Dufresne M, Sant VP, Kang N, Maysinger D, Leroux J. Block copolymer micelles: preparation, characterization and application in drug delivery. J Controlled Release. 2005;109:169-8. CrossRef
    38. Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, / et al. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm. 2005;288:349-9. CrossRef
    39. Buckley ST, Fischer SM, Fricker G, Brandl M. / In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives. Eur J Pharm Sci. 2012;45:235-0. CrossRef
    40. Quitschke W. Differential solubility of curcuminoids in serum and albumin solutions: implications for analytical and therapeutic applications. BMC Biotechnol. 2008;8:84. CrossRef
    41. Shen L, Ji H. Contribution of degradation products to the anticancer activity of curcumin. Clin Cancer Res. 2009. doi:10.1158/1078-0432.CCR-09-1749 .
    42. Pan M, Huang T, Lin J. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27:486-4.
    43. Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P, / et al. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol. 2012;69:679-9. CrossRef
    44. Ireson CR, Jones DJL, Orr S, Coughtrie MWH, Boocock DJ, Williams ML, / et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev. 2002;11:105-1.
    45. Rolls ET. A theory of hippocampal function in memory. Hippocampus. 1996;6:601-0. CrossRef
    46. Kim SJ, Son TG, Park HR, Park M, Kim M, Kim HS, / et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283:14497-05. CrossRef
    47. Givens B, Olton D. Local modulation of basal forebrain: effects on working and reference memory. J Neurosci. 1994;14:3578-7.
    48. Stéphan A, Laroche S, Davis S. Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci. 2001;21:5703-4.
    49. Liu IYC, Lyons WE, Mamounas LA, Thompson RF. Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. J Neurosci. 2004;24:7958-3. CrossRef
    50. Yao I, Takao K, Miyakawa T, Ito S, Setou M. Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive Behavioral phenotyping of / Scrapper heterozygote and overexpressing mutant mice. PLoS One. 2011;6:e17317. CrossRef
    51. Curzon P, Rustay N, Browman K. Cued and contextual fear conditioning for rodents. In: Buccafusco J, Buccafusco J, editors. Methods of behavior analysis in neuroscience. Boca Raton, FL: CRC Press; 2009. Chapter 2.
    52. Barnes P, Good M. Impaired Pavlovian cued fear conditioning in Tg2576 mice expressing a human mutant amyloid precursor protein gene. Behav Brain Res. 2005;157:107-7. CrossRef
    53. Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, / et al. The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci. 2002;22:1858-7.
    54. Dodart J, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, / et al. Immunization reverses memory deficits without reducing brain A[beta] burden in Alzheimer’s disease model. Nat Neurosci. 2002;5:452-.
    55. Ashe KH. Learning and memory in transgenic mice modeling Alzheimer’s disease. Learn Mem. 2001;8:301-. CrossRef
    56. Klein WL, Krafft GA, Finch CE. Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 2001;24:219-4. CrossRef
    57. Hsia AY, Masliah E, McConlogue L, Yu G, Tatsuno G, Hu K, / et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci. 1999;96:3228-3. CrossRef
    58. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, / et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352-. CrossRef
    59. Ali RE, Rattan SIS. Curcumin’s biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann N Y Acad Sci. 2006;1067:394-. CrossRef
  • 作者单位:Kwok Kin Cheng (1)
    Chin Fung Yeung (1)
    Shuk Wai Ho (1)
    Shing Fung Chow (1)
    Albert H. L. Chow (1)
    Larry Baum (1)

    1. School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
  • ISSN:1550-7416
文摘
The therapeutic effects of curcumin in treating Alzheimer’s disease (AD) depend on the ability to penetrate the blood–brain barrier. The latest nanoparticle technology can help to improve the bioavailability of curcumin, which is affected by the final particle size and stability. We developed a stable curcumin nanoparticle formulation to test in vitro and in AD model Tg2576 mice. Flash nanoprecipitation of curcumin, polyethylene glycol-polylactic acid co-block polymer, and polyvinylpyrrolidone in a multi-inlet vortex mixer, followed by freeze drying with β-cyclodextrin, produced dry nanocurcumin with mean particle size <80?nm. Nanocurcumin powder, unformulated curcumin, or placebo was orally administered to Tg2576 mice for 3?months. Before and after treatment, memory was measured by radial arm maze and contextual fear conditioning tests. Nanocurcumin produced significantly (p--.04) better cue memory in the contextual fear conditioning test than placebo and tendencies toward better working memory in the radial arm maze test than ordinary curcumin (p--.14) or placebo (p--.12). Amyloid plaque density, pharmacokinetics, and Madin–Darby canine kidney cell monolayer penetration were measured to further understand in vivo and in vitro mechanisms. Nanocurcumin produced significantly higher curcumin concentration in plasma and six times higher area under the curve and mean residence time in brain than ordinary curcumin. The P app of curcumin and tetrahydrocurcumin were 1.8?×-0? and 1.6?×-0??cm/s, respectively, for nanocurcumin. Our novel nanocurcumin formulation produced highly stabilized nanoparticles with positive treatment effects in Tg2576 mice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700