用户名: 密码: 验证码:
Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles
详细信息    查看全文
  • 作者:Fei Jia (1)
    Nuo Duan (1)
    Shijia Wu (1)
    Xiaoyuan Ma (1)
    Yu Xia (1)
    Zhouping Wang (1)
    Xinlin Wei (2)
  • 关键词:S. aureus ; Reduced graphene oxide ; EIS ; Label ; free detection ; Aptasensor
  • 刊名:Microchimica Acta
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:181
  • 期:9-10
  • 页码:967-974
  • 全文大小:475 KB
  • 参考文献:1. Ceylan KH, Kulah H, Ozgen C, Alp A, Hascelik G (2011) MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosens Bioelectron 29(1):1-2 CrossRef
    2. Boujday S, Briandet R, Salmain M, Herry JM, Marnet PG, Gautier M (2008) Detection of pathogenic / Staphylococcus aureus bacteria by gold based immunosensors. Microchim Acta 163:203-09 CrossRef
    3. Zelada G, Guatavo A, Sebastian JL, Blondeau P, Riu J, Rius FX (2012) Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron 31(1):226-32 CrossRef
    4. Pividori MI, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170:227-42 CrossRef
    5. Naomi B, Avraham R (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1-0 CrossRef
    6. Miao TG, Wang ZP, Li S, Wang X (2011) Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta 172:431-37 CrossRef
    7. Tsung C, Steven D (1992) Rapid detection of staphylococcus aureus in food by flow cytometry. J Rapid Meth Autom Microbiol 1:133-47 CrossRef
    8. Tang Q, Yuan LL, Xiao XL, Guo P, Hu JB, Ma DD, Gao YY (2013) DNAzyme based electrochemical sensors for trace uranium. Microchim Acta 180:1059-064 CrossRef
    9. Ding X, Li H, Deng L, Peng Z, Chen H, Wang D (2011) A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen. Biosens Bioelectron 26(11):4596-600 CrossRef
    10. Wang HY, Zhang CS, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes using oscillatory-flow multiplex PCR. Microchim Acta 173:503-12 CrossRef
    11. Wang ZJ, Zhang J, Chen P, Zhou XZ, Yang YL, Wu SX, Niu L, Han Y, Wang LH, Boey F, Zhang QC, Liedberg B, Zhang H (2011) Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens Bioelectron 26(9):3881-886 CrossRef
    12. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505-10 CrossRef
    13. Ellington AD, Szostak JW, Green R (1990) In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 346:818-22 CrossRef
    14. Qi HL, Wang C, Cheng N (2010) Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Microchim Acta 170:33-8 CrossRef
    15. Xia YF, Gan SW, Xu QH, Qiu XW, Gao PY, Huang SS (2013) A three-way junction aptasensor for lysozyme detection. Biosens Bioelectron 39(1):250-54 CrossRef
    16. Chen ZB, Li LD, Tian Y, Mu XJ, Guo L (2012) Signal amplification architecture for electrochemical aptasensor based on network-like thiocyanuric acid/gold nanoparticle/ssDNA. Biosens Bioelectron 38(1):37-2 CrossRef
    17. Zhao HM, Gao S, Liu M, Chang YY, Fan XF, Quan X (2013) Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide. Microchim Acta 180:829-35 CrossRef
    18. Wu SJ, Duan N, Ma XY, Xia Y, Wang HX, Wang ZP, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84(14):6263-270 CrossRef
    19. Shervedani RK, Akrami Z (2013) Gold–deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods. Biosens Bioelectron 39(1):31-6 CrossRef
    20. Gamella M, Campuzano S, Parrado C, Reviejo AJ, Pingarron JM (2009) Microorganisms recognition and quantification by lectinadsorptive affinity impedance. Talanta 78(4-):1303-309 CrossRef
    21. Escamilla GV, Campuzano S, Pedrero M, Pingarron JM (2009) Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation. Biosens Bioelectron 24(11):3365-371 CrossRef
    22. Varghese N, Mogera U, Govindaraj A, Das A, Maiti AK, Rao CNR (2008) Binding of DNA nucleobases and nucleosides with graphene. J Am Chem Soc 130:10876-0877 CrossRef
    23. Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH (2013) Recent advances on the efficient reduction of raphene oxide and its application as energy storage electrode materials. Nanoscale 5(1):52-1 CrossRef
    24. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. TrAC Trends Anal Chem 39:87-13 CrossRef
    25. Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 CrossRef
    26. Shao NS, Cao XX, Li SH, Chen LC, Ding HM, Xu H, Huang YP, Li J, Liu NL, Cao WL, Zhu YJ, Shen BF (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37(14):4621-628 CrossRef
    27. Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027-053 CrossRef
    28. Wang Y, Zhang S, Du D, Shao YY, Li ZH, Wang J, Engelhard MH, Li JH, Lin YH (2011) Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. J Mater Chem 21(14):5319 CrossRef
    29. Wang HJ, Yuan R, Chai YQ, Cao YL, Gan XX, Chen YF, Wang Y (2013) An ultrasensitive peroxydisulfate electrochemiluminescence immunosensor for Streptococcus suis serotype 2 based on L-cysteine combined with mimicking bi-enzyme synergetic catalysis to in situgenerate coreactant. Biosens Bioelectron 43:63-8 CrossRef
    30. Yuan JL, Yu Y, Li C, Ma XY, Chen J, Wang ZP (2014) Visual detection and microplate assay for / Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchim Acta. doi:10.1007/s00604-013-1120-6
    31. Chen GN, Lu CH, Yang HH, Zhu CL, Chen X (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785-787 CrossRef
    32. Lu L, Chee G, Yamada K, Jun S (2013) Electrochemical impedance spectroscopic technique with a functionalizedmicrowire sensor for rapid detection of foodborne pathogen. Biosens Bioelectron 42:492-95 CrossRef
    33. Ruan M, Niu CG, Zeng GM (2011) Rapid detection of Staphylococcus aureus via a sensitive DNA hybridization assay based on a long-lifetime luminescent europium marker. Microchim Acta 175:105-12 CrossRef
    34. Duan N, Wu SJ, Zhu CQ, Ma XY, Wang ZP, Yu Y, Jiang Y (2011) Dual-color upconversion flurescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detecion of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1- CrossRef
    35. Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG (2013) Novel antibody/gold nanoparticles/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detecion of Staphylococcus aureus in milk. Biosens Bioelectron 43:432-39 CrossRef
  • 作者单位:Fei Jia (1)
    Nuo Duan (1)
    Shijia Wu (1)
    Xiaoyuan Ma (1)
    Yu Xia (1)
    Zhouping Wang (1)
    Xinlin Wei (2)

    1. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
    2. Collage of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
  • ISSN:1436-5073
文摘
We describe here an aptasensor for the ultrasensitive detection of Staphylococcus aureus by electrochemical impedance spectroscopy (EIS). Single-stranded DNA was linked to a nanocomposite prepared from reduced graphene oxide (rGO) and gold nanoparticles (AuNP). Thiolated ssDNA was covalently linked to the AuNPs linked to rGO, and probe DNA was immobilized on the surface of an AuNP-modified glassy carbon electrode to capture and concentrate Staph. aureus. The probe DNA of the aptasensor selectively captures the target bacteria in its three-dimensional space, and these results in a dramatic increase in impedance. Scanning electron microscopy, cyclic voltammetry and EIS were used to monitor the single steps of the electrode assembly process. The effect was utilized to quantify the bacteria in the concentration range from 10 to 106?cfu?mL? and with a detection limit of 10?cfu?mL? (S/N--). The relative standard deviation of Staphylococcus aureus detection was equal to 4.3?% (105?cfu?mL?, n--). In addition to its sensitivity, the biosensor exhibits high selectivity over other pathogens. Figure Schematic representation of the GCE surface modification and the detection of S. aureus. Reduced graphene oxide and gold nanoparticle (AuNP) nanocomposite linked by single-stranded DNA was prepared and then used in an aptasensor for the ultrasensitive detection of Staphylococcus aureus through electrochemical impedance spectroscopy. The probe DNA of the aptasensor selectively captures the target bacteria in its three-dimensional space, and these results in a dramatic increase in impedance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700