用户名: 密码: 验证码:
Property enhancement of cast iron used for nuclear casks
详细信息    查看全文
  • 作者:R. K. Behera ; B. P. Mahto ; J. S. Dubey
  • 关键词:ductile iron ; nodularity ; mechanical properties ; failure modes ; nuclear industry
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:40-48
  • 全文大小:1,918 KB
  • 参考文献:[1]R. Konečná, G. Nicoletto, L. Bubenko, and S. Fintová, A comparative study of the fatigue behavior of two heat-treated nodular cast irons, Eng. Fract. Mech., 108(2013), p. 251.CrossRef
    [2]R.C. Dommarco, M.E. Sousa, and J.A. Sikora, Abrasion resistance of high nodule count ductile iron with different matrix microstructures, Wear, 257(2004), No. 4, p. 1185.CrossRef
    [3]A.M. Rashidi and M. Moshrefi-Torbati, Effect of tempering conditions on the mechanical properties of ductile cast iron with dual matrix structure (DMS), Mater. Lett., 45(2000), No. 3-4, p. 203.CrossRef
    [4]R. Zhou, Y.H. Jiang, D.H. Lu, R.F. Zhou, and Z.H. Li, Development and characterization of a wear resistant bainite/ martensite ductile iron by combination of alloying and a controlled cooling heat-treatment, Wear, 250(2001), No. 1-12, p. 529.CrossRef
    [5]R. Martins, J. Seabra, and L. Magalhães, Austempered ductile iron (ADI) gears: Power loss, pitting and micropitting, Wear, 264(2008), No. 9-10, p. 838.CrossRef
    [6]O. Erić, M. Jovanović, L. Šidānin, D. Rajnović, and S. Zec, The austempering study of alloyed ductile iron, Mater. Des., 27(2006), No. 7, p. 617.CrossRef
    [7]S.K. Putatunda, S. Kesani, R. Tackett, and G. Lawes, Development of austenite free ADI (austempered ductile cast iron), Mater. Sci. Eng. A, 435-436(2006), p. 112.CrossRef
    [8]K.N. Murthy, P. Sampathkumaran, and S. Seetharamu, Abrasion and erosion behaviour of manganese alloyed permanent moulded austempered ductile iron, Wear, 267(2009), No. 9-10, p. 1393.CrossRef
    [9]Z.M. El-Baradie, M.M. Ibrahim, I.A. El-Sisy, and A.A. Abd El-Hakeem, Austempering of spheroidal graphite cast iron, Mater. Sci., 40(2004), No. 4, p. 523.CrossRef
    [10]B. Murat and S.I. Akray, Successive boronizing and austempering for GGG-40 grade ductile iron, J. Iron Steel Res. Int., 16(2009), No. 2, p. 50.CrossRef
    [11]A.R. Ghaderi, M. Nili Ahmadabadi, and H.M. Ghasemi, Effect of graphite morphologies on the tribological behavior of austempered cast iron, Wear, 255(2003), No. 1-6, p. 410.CrossRef
    [12]Y.C. Peng, H.J. Jin, J.H. Liu, and G.L. Li, Influence of cooling rate on the microstructure and properties of a new wear resistant carbidic austempered ductile iron (CADI), Mater. Charact., 72(2012), p. 53.CrossRef
    [13]S.K. Putatunda, Comparison of the mechanical properties of austempered ductile cast iron (ADI) processed by conventional and step-down austempering process, Mater. Manuf. Process., 25(2010), p. 749.CrossRef
    [14]Y.C. Peng, H.J. Jin, J.H. Liu, and G.L. Li, Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron, Mater. Sci. Eng. A, 529(2011), p. 321.CrossRef
    [15]L. Sidjanin, R.E. Smallman, and J.M. Young, Electron microstructure and mechanical properties of silicon and aluminium ductile irons, Acta Metall. Mater., 42(1994), No. 9, p. 3149.CrossRef
    [16]A.H. Elsayed, M.M. Megahed, A.A. Sadek, and K.M. Abouelela, Fracture toughness characterization of austempered ductile iron produced using both conventional and two-step austempering processes, Mater. Des., 30(2009), No. 6, p. 1866.CrossRef
    [17]T.L. Teng, Y.A. Chu, F.A. Chang, H.S. Chin, and M.C. Lee, The dynamic analysis of nuclear waste cask under impact loading, Ann. Nucl. Energy, 30(2003), No. 14, p. 1473.CrossRef
    [18]N. Jakšić and K. Nilsson, Finite element modelling of the one meter drop test on a steel bar for the CASTOR cask, Nucl. Eng. Des., 239(2009), No. 2, p. 201.CrossRef
    [19]J. Brynda, P. Hosnedl, M. Jilek and M. Picek, Material issues in manufacturing and operation of transport and storage spent fuel casks, [in] Transactions of 15th International Conference on Structural Mechanics in Reactor Technology, Seoul, 1999, p.247.
    [20]M. Kazemi, A.R. Kiani-Rashid, A. Nourian, and A. Babakhani, Investigation of microstructural and mechanical properties of austempered steel bar-reinforced ductile cast iron composite, Mater. Des., 53(2014), p. 1047.CrossRef
    [21]C. Delprete and R. Sesana, Experimental characterization of a Si–Mo–Cr ductile cast iron, Mater. Des., 57(2014), p. 528.CrossRef
    [22]A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Balloy, and J. Favergeon, Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron, Mater. Sci. Eng. A, 605(2014), p. 222.CrossRef
    [23]C.H. Hsu and K.T. Lin, A study on microstructure and toughness of copper alloyed and austempered ductile irons, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5706.CrossRef
    [24]B.D. Cullity, Elements of X-ray Diffraction, Massachusetts, Addison-Wesley Publishing Company, 1956.
    [25]K.B. Sorenson and R.J. Salzbrenner, Quality assurance aspects in using ductile cast iron for transportation casks, [in] Waste Management’ 88, Phoenix, 1988, 107.
    [26]M. Heydarzadeh Sohi, M. Nili Ahmadabadi, and A. Bahrami Vahdat, The role of austempering parameters on the structure and mechanical properties of heavy section ADI, J. Mater. Process. Technol., 153-154(2004), p. 203.CrossRef
    [27]W. Xu, M. Ferry, and Y. Wang, The effect of ausferrite formation on the mechanical properties of gray iron, Scripta Mater., 51(2004), No. 7, p. 705.CrossRef
    [28]O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, and M.T. Jovanovic, Microstructure and toughness of CuNiMo austempered ductile iron, Mater. Lett., 58(2004), No. 22-23, p. 2707.CrossRef
    [29]J.M. Han, Q. Zou, G.C. Barber, T. Nasir, D.O. Northwood, X.C. Sun, and P. Seaton, Study of the effects of austempering temperature and time on scuffing behavior of austempered Ni–Mo–Cu ductile iron, Wear, 290-291(2012), p. 99.CrossRef
    [30]N. Rebasa, R. Dommarco, and J. Sikora, Wear resistance of high nodule count ductile iron, Wear, 253(2002), No. 7-8, p. 855.CrossRef
    [31]Y.F. Sun, S.M. Hu, Z.Y. Xiao, S.S. You, J.Y. Zhao, and Y.Z. Lv, Effects of nickel on low-temperature impact toughness and corrosion resistance of high-ductility ductile iron, Mater. Des., 41(2012), p. 37.CrossRef
    [32]E.M. El-Banna, A study of ferritic centrifugally cast ductile cast iron, Mater. Lett., 20(1994), No. 3-4, p. 99.CrossRef
    [33]G.S. Cho, K.H. Choe, K.W. Lee, and A. Ikenaga, Effects of alloying elements on the microstructures and mechanical properties of heavy section ductile cast Iron, J. Mater. Sci. Technol., 23(2007), No. 1, p. 97.CrossRef
    [34]R.A. Gonzaga, Influence of ferrite and pearlite content on mechanical properties of ductile cast irons, Mater. Sci. Eng. A, 567(2013), p. 1.CrossRef
    [35]P.W. Shelton and A.A. Bonner, The effect of copper additions to the mechanical properties of austempered ductile iron (ADI), J. Mater. Process. Technol., 173(2006), No. 3, p. 269.CrossRef
    [36]B.Y. Lin, E.T. Chen, and T.S. Lei, The effect of alloy elements on the microstructure and properties of austempered ductile irons, Scripta Metall. Mater., 32(1995), No. 9, p. 1363.CrossRef
    [37]V. Kerlins, Modes of Fracture, ASM Handbook, Kathleen Mills, Joseph R. Davis, James D. Destefani, Deborah A. Dieterich, Heather J. Frissell, George M. Crankovic, and Diane M. Jenkins, eds., ASM International, USA, 1987, p. 12.
    [38]S. Sen, S.C. Mishra, and S. Sarkar, Characterization of ADI through fractographic analysis, Technol. World, V(2010), No. 1, p. 45.
  • 作者单位:R. K. Behera (1)
    B. P. Mahto (1)
    J. S. Dubey (2)
    S. C. Mishra (1)
    S. Sen (1)

    1. Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
    2. Bhaba Atomic Research Centre, Post Irradiation Examination Division, Mumbai, 400085, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Metallic Materials
    Mineral Resources
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1869-103X
文摘
Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than annealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was characterized by the presence of dimples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700