用户名: 密码: 验证码:
Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort
详细信息    查看全文
  • 作者:Haichao Gui ; George Vukovich
  • 关键词:Adaptive control ; Attitude and position control ; Dual quaternions ; Relative dynamics ; Six ; DOF
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:83
  • 期:1-2
  • 页码:597-614
  • 全文大小:1,607 KB
  • 参考文献:1.Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Elsevier, New York (2010)
    2.Wen, J., Kreutz-Delgado, K.: The attitude control problem. IEEE Trans. Autom. Control 36(10), 1148鈥?162 (1991). doi:10.鈥?109/鈥?.鈥?0228 MATH CrossRef MathSciNet
    3.Bajodah, A.H.: Singularly perturbed feedback linearization with linear attitude deviation dynamics realization. Nonlinear Dyn. 53(4), 321鈥?43 (2008). doi:10.鈥?007/鈥媠11071-007-9316-0 MATH CrossRef MathSciNet
    4.Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. Autom. Control 56(11), 2555鈥?566 (2011). doi:10.鈥?109/鈥婽AC.鈥?011.鈥?108490 CrossRef MathSciNet
    5.Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1鈥?), 53鈥?1 (2013). doi:10.鈥?007/鈥媠11071-013-0766-2 MATH CrossRef MathSciNet
    6.Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. 76(3), 1753鈥?760 (2014). doi:10.鈥?007/鈥媠11071-014-1243-2 CrossRef MathSciNet
    7.Chen, Z., Cong, B., Liu, X.: A robust attitude control strategy with guaranteed transient performance via modified Lyapunov-based control and integral sliding mode control. Nonlinear Dyn. 78(3), 220鈥?218 (2014). doi:10.鈥?007/鈥媠11071-014-1598-4 MathSciNet
    8.Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2138), 395鈥?14 (2012). doi:10.鈥?098/鈥媟spa.鈥?011.鈥?233 CrossRef MathSciNet
    9.Bajodah, A.H.: Asymptotic generalised dynamic inversion attitude control. IET Control Theory Appl. 4(5), 827鈥?40 (2010). doi:10.鈥?049/鈥媔et-cta.鈥?009.鈥?008 CrossRef MathSciNet
    10.Gui, H., Jin, L., Xu, S.: Attitude maneuver control of a two-wheeled spacecraft with bounded wheel speeds. Acta Astronaut. 88, 98鈥?07 (2013). doi:10.鈥?016/鈥媕.鈥媋ctaastro.鈥?013.鈥?3.鈥?06 CrossRef
    11.Gui, H., Jin, L., Xu, S., Zhang, J.: On the attitude stabilization of a rigid spacecraft by two skew control moment gyros. Nonlinear Dyn. 79(3), 2079鈥?097 (2015). doi:10.鈥?007/鈥媠11071-014-1796-0 CrossRef
    12.Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Spacecraft coordination control in 6DOF: integrator backstepping vs passivity-based control. Automatica 44(11), 2896鈥?901 (2008). doi:10.鈥?016/鈥媕.鈥媋utomatica.鈥?008.鈥?4.鈥?19 MATH CrossRef MathSciNet
    13.Pan, H., Kapila, V.: Adaptive Nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics. In: Proceedings of 40th IEEE Conference on Decision and Control, pp. 2057鈥?062. IEEE Publications, Piscataway, NJ (2001)
    14.Singla, P., Subbarao, K., Junkins, J.L.: Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. J. Guid. Control Dyn. 29(4), 892鈥?02 (2006). doi:10.鈥?514/鈥?.鈥?7498 CrossRef
    15.Bullo, F., Murray, R.M.: Proportional derivative (PD) control on the Euclidean group. In: Proceedings of European Control Conference, vol. 2, pp. 1091鈥?097. European Control Association, Zurich, Switzerland (1995)
    16.Lee, D., Sanyal, A., Butcher, E.: Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance. J. Guid. Control Dyn. 38(4), 587鈥?00 (2015). doi:10.鈥?514/鈥?.鈥婫000101 CrossRef
    17.Goddard, J.S.: Pose and Motion Estimation from Vision Using Dual Quaternion-Based Extended Kalman Filtering. Ph.D. Thesis, University of Tennessee, Knoxville, TN (1997)
    18.Wu, Y., Hu, X., Hu, D., Li, T., Lian, J.: Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Trans. Aerosp. Electron. Syst. 41(1), 110鈥?32 (2005). doi:10.鈥?109/鈥婽AES.鈥?005.鈥?413751 CrossRef
    19.Brodsky, V., Shoham, M.: Dual numbers representation of rigid body dynamics. Mech. Mach. Theory 34(5), 693鈥?18 (1999). doi:10.鈥?016/鈥婼0094-114X(98)00049-4 MATH CrossRef MathSciNet
    20.Wang, X., Yu, C.: Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics. Syst. Control Lett. 62(3), 225鈥?33 (2013). doi:10.鈥?016/鈥媕.鈥媠ysconle.鈥?012.鈥?1.鈥?19 MATH CrossRef
    21.Zhang, F., Duan, G.: Robust integrated translation and rotation finite-time maneuver of a rigid spacecraft based on dual quaternion. In: 2011 AIAA Guidance, Navigation, and Control Conference, 08鈥?1 August, 2011, Portland, Oregon, USA, AIAA 2011-6396
    22.Wang, J., Liang, H., Sun, Z., Zhang, S., Liu, M.: Finite-time control for spacecraft formation with dual-number-based description. J. Guid. Control Dyn. 35(3), 950鈥?62 (2012). doi:10.鈥?514/鈥?.鈥?4277 CrossRef
    23.Wang, J., Sun, Z.: 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying. Acta Astronaut. 73, 76鈥?7 (2012). doi:10.鈥?016/鈥媕.鈥媋ctaastro.鈥?011.鈥?2.鈥?05 CrossRef
    24.Filipe, N., Tsiotras, P.: Adaptive position and attitude-tracking controller for satellite proximity operations using dual quaternions. J. Guid. Control Dyn. 38(4), 566鈥?77 (2015). doi:10.鈥?514/鈥?.鈥婫000054 CrossRef
    25.Wong, H., Pan, H.Z., Kapila, V.: Output feedback control for spacecraft formation flying with coupled translation and attitude dynamics. In: Proceedings of the American Control Conference, pp. 2419鈥?426 (2005)
    26.Filipe, N., Tsiotras, P.: Rigid body motion tracking without linear and angular velocity feedback using dual quaternions. In: European Control Conference, pp. 329鈥?34. IEEE, Piscataway, NJ (2013)
    27.Bhat, S.P., Bernstein, D.S.: A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst. Control Lett. 39(1), 63鈥?0 (2000). doi:10.鈥?016/鈥婼0167-6911(99)00090-0 MATH CrossRef MathSciNet
    28.Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Upper Saddle River, NJ (1991)MATH
    29.Kr酶vel, T.D., D枚rfler, F., Berger, M., Rieber, J.M.: High-precision spacecraft attitude and manoeuvre control using electric propulsion. In: 60th International Astronautical Congress, 12鈥?6 October, 2009, Daejeon, Korea, IAC-09.C1.7.2
    30.Leomanni, M., Garulli, A., Giannitrapani, A., Scortecci, F.: Precise attitude control of all-electric GEO spacecraft using Xenon microthrusters. In: The 33rd International Electric Propulsion Conference, 6鈥?0 October, 2013, Washington, DC, USA
    31.Wang, Y., Xu, S.: On the nonlinear stability of relative equilibria of the full spacecraft dynamics around an asteroid. Nonlinear Dyn. 78(1), 1鈥?3 (2014). doi:10.鈥?007/鈥媠11071-013-1203-2 CrossRef
  • 作者单位:Haichao Gui (1)
    George Vukovich (1)

    1. Department of Earth and Space Science and Engineering, York University, Toronto, ON, M3J 1P3, Canada
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
The position and attitude tracking of a rigid spacecraft is approached with coupled six-degrees-of-freedom dynamics described by dual quaternions. By taking advantage of the compact, nonlinear, integrated relative motion dynamics, a simple proportional-derivative (PD) controller is designed at first in the absence of modeling uncertainties. The presence of unknown mass and inertia as well as unknown constant disturbances is then taken into account. An adaptive controller is developed by combining the PD controller with an adaptive algorithm, which provides estimations of unknown parameters and disturbances. Both controllers ensure almost global asymptotic convergence of the relative pose tracking error. In addition, the proposed methods are not only computationally efficient but can also reduce the control energy consumption, since the gyroscopic terms involved in the system dynamics are preserved, rather than being cancelled by feedback. Numerical simulations demonstrate the effectiveness of the proposed methods. Keywords Adaptive control Attitude and position control Dual quaternions Relative dynamics Six-DOF

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700