用户名: 密码: 验证码:
Calculation of current density for graphene superlattice in a constant electric field
详细信息    查看全文
  • 作者:Farhad Sattari (1)

    1. Faculty of Sciences
    ; Department of Physics ; University of Mohaghegh Ardabili ; P.O. Box 179 ; Ardabil ; Iran
  • 关键词:Graphene superlattice ; Electrical transport ; Electric field ; Current density
  • 刊名:Journal of Theoretical and Applied Physics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:9
  • 期:1
  • 页码:81-87
  • 全文大小:1,121 KB
  • 参考文献:1. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Griegorieva, IV, Firsov, AA (2004) Electric field effect in atomically thin carbon films. Science 306: pp. 666 CrossRef
    2. Meyer, JC, Geim, AK, Katsnelson, MI, Novoselov, KS, Booth, TJ, Roth, S (2007) The structure of suspended graphene sheets. Nature 446: pp. 60 CrossRef
    3. Novoselov, KS, Geim, AK (2007) The rise of graphene. Nat. Mater. 6: pp. 183 CrossRef
    4. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Katsnelson, MI, Grigorieva, IV, Dubonos, SV, Firsov, AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: pp. 197 CrossRef
    5. Zhang, Y., Wen Tan, Y., Stormer, H. L., Kim, P.: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature (London) 438, 201 (2005)
    6. Gonz麓alez, J., Guinea, F., Vozmediano, M.A.H.: Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction. Phys. Rev. B 59, R2474 (1999)
    7. Kane, CL, Mele, EJ (2004) Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93: pp. 197402 CrossRef
    8. Katsnelson, MI, Nososelov, KS, Geim, AK (2006) Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2: pp. 620 CrossRef
    9. Barbier, M, Peeters, FM, Vasilopoulos, P, Pereira Jr, JM (2008) Dirac and Klein-Gordon particles in one-dimensional periodic potentials. Phys. Rev. B 77: pp. 115446 CrossRef
    10. Pereira, JM, Mlinar, V, Peeters, FM, Vasilopoulos, P (2006) Confined states and direction dependent transmission in graphene quantum wells. Phys. Rev. B 74: pp. 045424 CrossRef
    11. Cheianov, VV, Fal鈥檏o, VI (2006) Selective transmission of Dirac electrons and ballistic magnetoresistance of n鈭抪 junctions in graphene. Phys. Rev. B 74: pp. 041403(R) CrossRef
    12. Wright, AR, Xu, XG, Cao, JC, Zhang, C (2009) Strong nonlinear optical response of graphene in the terahertz regime. Appl. Phys. Lett. 95: pp. 072101 CrossRef
    13. Mikhaliov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: Frequency multiplication and the self-consistent-field effects. J. Phys.: Codens. Matter 20, 384204 (2008)
    14. Novoselov, KS, McCann, E, Morozov, SV, Fal鈥檏o, VI, Katsnelson, MI, Zeitler, U, Jiang, D, Schedin, F, Geim, AK (2005) Unconventional quantum Hall effect and Berry's phase of 2pi in bilayer graphene. Nat. Phys. 2: pp. 177 CrossRef
    15. Tworzydlo, J, Trauzettel, B, Titov, M, Rycerz, A, Beenakker, CWJ (2006) Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96: pp. 246802 CrossRef
    16. Beenakker, CWJ (2006) Specular Andreev reflection in graphene. Phys. Rev. Lett. 97: pp. 067007 CrossRef
    17. Tsu, R, Esaki, L (1973) Tunneling in a finite superlattice. Appl. Phys. Lett. 22: pp. 562 CrossRef
    18. Meghoufel, FZ, Bentata, S, Terkhi, S, Bendahma, F, Cherid, S (2013) Electronic transmission in non-linear potential profile of GaAs/AlxGa1鈭抶As biased quantum well structure. Superlattices Microstruct. 57: pp. 115 CrossRef
    19. Bastard, G, Mendez, EE, Chang, LL, Esak, L (1983) Variational calculations on a quantum well in an electric field. Phys. Rev. B 28: pp. 3241 CrossRef
    20. Sibille, A., Palmier, J.F., Wang, H., Mollot, F.: Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices. Phys. Rev. Lett. 64, 52 (1990)
    21. L, James (1989) Electron transport in a disordered semiconductor superlattice. Phys. Rev. B 39: pp. 5947 CrossRef
    22. Niu, ZP, Li, FX, Wang, BG, Slieng, L, Xing, DX (2008) Spin transport in magnetic graphene superlattices. Eur. Phys. J. B 66: pp. 245 CrossRef
    23. Bai, C, Zhang, X (2007) Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B 76: pp. 075430 CrossRef
    24. Abedpour, N, Esmailpour, A, Asgari, R, Rahimi Tabar, MR (2009) Conductance of a disordered graphene superlattice. Phys. Rev. B 79: pp. 165412 CrossRef
    25. Ke, Q, L眉, H, Chen, X, Zu, X (2011) Enhanced spin polarization in an asymmetric magnetic graphene superlattice. Solid State Commun. 151: pp. 1131 CrossRef
    26. Faizabadi, E, Esmaeilzadeh, M, Sattari, F (2012) Spin filtering in a ferromagnetic graphene superlattice. Eur. Phys. J. B 85: pp. 30073 CrossRef
    27. Sattari, F, Faizabadi, E (2014) Spin transport and wavevector-dependent spin filtering through magnetic graphene superlattice. Solid State Commun. 79: pp. 48 CrossRef
    28. Sattari, F, Faizabadi, E (2013) Band gap opening effect on the transport properties of bilayer graphene superlattice. Int. J. Mod. Phys. B 27: pp. 1350024 CrossRef
    29. Yokoyama, T (2008) Controllable spin transport in ferromagnetic graphene junctions. Phys. Rev. B 77: pp. 073413 CrossRef
    30. Mukhopadhyay, S, Biswas, R, Sinha, C (2010) Resonant tunnelling in a Fibonacci bilayer graphene superlattice. Phys. Status Solidi B 247: pp. 342 CrossRef
    31. Pereira, JM, Vasilopoulos, P, Peeters, FM (2007) Graphene-based resonant-tunneling structures. Appl. Phys. Lett. 90: pp. 132122 CrossRef
    32. Pereira, JM, Vasilopoulos, P, Peeters, FM (2008) Resonant tunneling in graphene microstructures. Microelectron. J. 39: pp. 534-536 CrossRef
    33. Biswas, R, Mukhopadhyay, S, Sinha, C (2010) Biased driven resonant tunneling through a double barrier graphene based structure. Phys. E 42: pp. 1781 CrossRef
    34. Nam Do, V (2008) Comment on 鈥淣egative differential conductance of electrons in graphene barrier鈥? Appl. Phys. Lett. 92: pp. 216101 CrossRef
    35. Dragoman, D, Dragoman, M (2007) Negative differential resistance of electrons in graphene barrier. Appl. Phys. Lett. 90: pp. 143111 CrossRef
  • 刊物主题:Theoretical, Mathematical and Computational Physics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2251-7235
文摘
Based on the transfer-matrix method, this paper has investigated the electrical transport properties in monolayer and bilayer graphene superlattices modulated by a homogeneous electric field. It is found that the angular range of the transmission probability can be efficiently controlled by the number of barriers. In addition, current density has an oscillatory behavior with respect to external field and Fermi energy. In other words, the current density in monolayer and bilayer graphene superlattices can be controlled by changing either the external field or the Fermi energy. Meanwhile, in the bilayer system unlike monolayer structure the value of current density can be zero. So, for designing electronic devices, bilayer graphene is more efficient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700