k B T below the band edge, as is observed for doped channels." />
用户名: 密码: 验证码:
Use of Field-Effect Density Modulation to Increase ZT for Si Nanowires: A Simulation Study
详细信息    查看全文
  • 作者:Neophytos Neophytou ; Hossein Karamitaheri ; Hans Kosina
  • 关键词:Silicon nanowires ; low ; dimensional thermoelectrics ; gated thermoelectrics ; Boltzmann transport ; thermoelectric power factor ; Seebeck coefficient
  • 刊名:Journal of Electronic Materials
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:44
  • 期:6
  • 页码:1599-1605
  • 全文大小:985 KB
  • 参考文献:1.N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).View Article
    2.M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).View Article
    3.B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).View Article
    4.B.M. Curtin, E.A. Codecido, S. Kr?mer, and J.E. Bowers, Nano Lett. 13, 5503 (2013).View Article
    5.Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, and X.P.A. Gao, Nano Lett. 12, 6492 (2012).View Article
    6.J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, and R. Chen, Nano Lett. 13, 1196 (2013).View Article
    7.B.M. Curtin and J.E. Bowers, J. Appl. Phys. 115, 143704 (2014).View Article
    8.W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, and P. Yang, Nano Lett. 9, 1689 (2009).View Article
    9.A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).View Article
    10.A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).View Article
    11.N. Neophytou, O. Baumgartner, Z. Stanojevic, and H. Kosina, Solid State Electron. 90, 44 (2013).View Article
    12.T.B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).View Article
    13.G. Klimeck, S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T.B. Boykin, IEEE Trans. Electron. Dev. 54, 2079 (2007).View Article
    14.N. Neophytou, M. Wagner, H. Kosina, and S. Selberherr, J. Electron. Mater. 39, 1902-908 (2010).View Article
    15.S. Lee, F. Oyafuso, P. Von Allmen, and G. Klimeck, Phys. Rev. B 69, 045316 (2004).View Article
    16.G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).View Article
    17.T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).View Article
    18.S. Jin, M.V. Fischetti, and T.-W. Tang, J. Appl. Phys. 102, 083715 (2007).View Article
    19.H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).View Article
    20.K. Uchida and S. Takagi, Appl. Phys. Lett. 82, 2916 (2003).View Article
    21.E.B. Ramayya, D. Vasileska, S.M. Goodnick, and I. Knezevic, J. Appl. Phys. 104, 063711 (2008).View Article
    22.N. Neophytou and H. Kosina, Phys. Rev. B 84, 085313 (2011).View Article
    23.H.J. Ryu, Z. Aksamija, D.M. Paskiewicz, S.A. Scott, M.G. Lagally, I. Knezevic, and M.A. Eriksson, Phys. Rev. Lett. 105, 256601 (2010).View Article
    24.N. Neophytou and H. Kosina, J. Appl. Phys. 112, 024305 (2012).View Article
    25.K. Rameshan, N.A. Wong, K. Chan, S.P. Sim, and C.Y. Yang, Solid-State Electron. 46, 153 (2002).View Article
    26.H. Karamitaheri, N. Neophytou, and H. Kosina, J. Electron. Mater. 43, 1829 (2014).View Article
    27.H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 024302 (2014).View Article
  • 作者单位:Neophytos Neophytou (1)
    Hossein Karamitaheri (2)
    Hans Kosina (3)

    1. School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
    2. Department of Electrical Engineering, University of Kashan, 87317-51167, Kashan, Iran
    3. Institute for Microelectronics, Technical University of Vienna, Wien, Austria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Modulation doping is a promising means of increasing the electrical conductivity of thermoelectric (TE) materials and achieving a high figure of merit (ZT). We compared, qualitatively and quantitatively, the TE performance of a field-effect density modulated Si nanowire channel of diameter D?=?12?nm with that of its doped counterpart, by use of self-consistent atomistic tight-binding simulations coupled to the Boltzmann transport equation. We describe the simulation model, and show that as a result of a large improvement in electrical conductivity, gating, rather than doping, can result in greater than three-fold improvement of the TE power factor. Despite the large increase in the electronic part of the thermal conductivity, the total thermal conductivity is still dominated by phonons. Thus, a ZT more than three-fold higher can also be achieved in the gated channel compared with the doped channel. Finally, we show that the power factor peak is obtained when the Fermi level resides ?em class="EmphasisTypeItalic">k B T below the band edge, as is observed for doped channels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700