用户名: 密码: 验证码:
Phase slip solutions in magnetically modulated Taylor–Couette flow
详细信息    查看全文
  • 作者:Rainer Hollerbach ; Farzana Khan
  • 刊名:Acta Mechanica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:227
  • 期:2
  • 页码:311-319
  • 全文大小:2,108 KB
  • 参考文献:1.van Gils D.P.M., Bruggert G.W., Lathrop D.P., Sun C., Lohse D.: The Twente turbulent Taylor–Couette (\({{T}^3{C}}\) ) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders. Rev. Sci. Inst. 82, 025105 (2011)CrossRef
    2.Avila K., Hof B.: High-precision Taylor–Couette experiment to study subcritical transitions and the role of boundary conditions and size effects. Rev. Sci. Inst. 84, 065106 (2013)CrossRef
    3.Collins C., Clark M., Cooper C.M., Flanagan K., Khalzov I.V., Nornberg M.D., Seidlitz B., Wallace J., Forest C.B.: Taylor–Couette flow of unmagnetized plasma. Phys. Plasmas 21, 042117 (2014)CrossRef
    4.Youd A.J., Willis A.P., Barenghi C.F.: Non-reversing modulated Taylor–Couette flows. Fluid Dyn. Res. 36, 61–73 (2005)CrossRef MathSciNet MATH
    5.Watanabe T., Toya Y.: Vertical Taylor–Couette flow with free surface at small aspect ratio. Acta Mech. 223, 347–353 (2012)CrossRef MATH
    6.Shi L., Rampp M., Hof B., Avila M.: A hybrid MPI-OpenMP parallel implementation for pseudospectral simulations with application to Taylor–Couette flow. Comp. Fluids 106, 1–11 (2015)CrossRef MathSciNet
    7.Pomeau Y., Manneville P.: Stability and fluctuations of a spatially periodic convective flow. J. Phys. Paris 40, L609–612 (1979)CrossRef
    8.Kramer L., Ben-Jacob E., Brand H., Cross M.C.: Wavelength selection in systems far from equilibrium. Phys. Rev. Lett. 49, 1891–1894 (1982)CrossRef MathSciNet
    9.Riecke H., Paap H.-G.: Perfect wave-number selection and drifting patterns in ramped Taylor vortex flow. Phys. Rev. Lett. 59, 2570–2573 (1987)CrossRef
    10.Chomaz J.-M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Ann. Rev. Fluid Mech. 37, 357–392 (2005)CrossRef MathSciNet
    11.Cannell D.S., Dominguez-Lerma M.A., Ahlers G.: Experiments on wave number selection in rotating Couette-Taylor flow. Phys. Rev. Lett. 50, 1365–1368 (1983)CrossRef
    12.Dominguez-Lerma M.A., Cannell D.S., Ahlers G.: Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow. Phys. Rev. A 34, 4956–4970 (1986)CrossRef
    13.Ning L., Ahlers G., Cannell D.S.: Wave-number selection and traveling vortex waves in spatially ramped Taylor–Couette flow. Phys. Rev. Lett. 64, 1235–1238 (1990)CrossRef
    14.Paap H.-G., Riecke H.: Drifting vortices in ramped Taylor vortex flow: quantitative results from phase equation. Phys. Fluids. 3, 1519–1532 (1991)CrossRef MATH
    15.Wiener R.J., Snyder G.L., Prange M.P., Frediani D., Diaz P.R.: Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow with hourglass geometry. Phys. Rev. E 55, 5489–5497 (1997)CrossRef
    16.Velikhov E.P.: Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 9, 995–998 (1959)
    17.Balbus S.A., Hawley J.F.: A powerful local shear instability in weakly magnetized disks. Astrophys. J. 376, 214–222 (1991)CrossRef
    18.Ji H., Goodman J., Kageyama A.: Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. Roy. Astron. Soc. 325, L1–5 (2001)CrossRef
    19.Rüdiger G., Zhang Y.: MHD instability in differentially-rotating cylindric flows. Astron. Astrophys. 378, 302–308 (2001)CrossRef MATH
    20.Hollerbach R., Rüdiger G.: New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95, 124501 (2005)CrossRef
    21.Hollerbach R., Teeluck V., Rüdiger G.: Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 104, 044502 (2010)CrossRef
    22.Nornberg M.D., Ji H., Schartman E., Roach A., Goodman J.: Observation of magnetocoriolis waves in a liquid metal Taylor–Couette experiment. Phys. Rev. Lett. 104, 074501 (2010)CrossRef
    23.Roach A.H., Spence E.J., Gissinger C., Edlund E.M., Sloboda P., Goodman J., Ji H.: Observation of a free Shercliff layer instability in cylindrical geometry. Phys. Rev. Lett. 108, 154502 (2012)CrossRef
    24.Stefani F., Gundrum T., Gerbeth G., Rüdiger G., Schultz M., Szklarski J., Hollerbach R.: Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006)CrossRef
    25.Seilmayer M., Galindo V., Gerbeth G., Gundrum T., Stefani F., Gellert M., Rüdiger G., Schultz M., Hollerbach R.: Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505 (2014)CrossRef
    26.Colgate S.A., Beckley H., Si J., Martinic J., Westphahl D., Slutz J., Westrom C., Klein B., Schendel P., Scharle C., McKinney T., Ginanni R., Bentley I., Mickey T., Ferrel R., Li H., Pariev V., Finn J.: High magnetic shear gain in a liquid sodium stable Couette flow experiment: a prelude to an α − Ω dynamo. Phys. Rev. Lett. 106, 175003 (2011)CrossRef
    27.Chandrasekhar S.: The stability of viscous flow between rotating cylinders in the presence of a magnetic field. Proc. R. Soc. A 216, 293–309 (1953)CrossRef MathSciNet MATH
    28.Donnelly R.J., Ozima M.: Hydromagnetic stability of flow between rotating cylinders. Phys. Rev. Lett. 4, 497–498 (1960)CrossRef
    29.Donnelly R.J., Ozima M.: Experiments on stability of flow between rotating cylinders in presence of a magnetic field. Proc. R. Soc. A 266, 272–286 (1962)CrossRef MATH
    30.Hollerbach R.: Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R. Soc. A 465, 2003–2013 (2009)CrossRef MathSciNet MATH
    31.Travnikov V., Eckert K., Odenbach S.: Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011)CrossRef MATH
    32.Cabanes S., Schaeffer N., Nataf H.-C.: Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Phys. Rev. Lett. 113, 184501 (2014)CrossRef
    33.Zimmermann D.S., Triana S.A., Nataf H.-C., Lathrop D.P.: A turbulent high magnetic Reynolds number experimental model of Earth’s core. J. Geophys. Res. 119, 4538–4557 (2014)CrossRef
    34.Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, (1968)
    35.Hollerbach R.: Spectral solutions of the MHD equations in cylindrical geometry. Int. J. Pure Appl. Math. 42, 575–581 (2008)MathSciNet
    36.Dominguez-Lerma M.A., Ahlers G., Cannell D.S.: Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh-Bénard convection. Phys. Fluids 27, 856–860 (1984)CrossRef MATH
    37.Jones C.A.: The transition to wavy Taylor vortices. J. Fluid Mech. 157, 135–162 (1985)CrossRef
    38.Graham R., Domaradzki J.A.: Local amplitude equation of Taylor vortices and its boundary condition. Phys. Rev. A 26, 1572–1579 (1982)CrossRef
    39.Rucklidge A.M., Champneys A.R.: Boundary effects and the onset of Taylor vortices. Phys. D 191, 282–296 (2004)CrossRef MathSciNet MATH
    40.Sprague M.A., Weidman P.D.: Continuously tailored Taylor vortices. Phys. Fluids 21, 114106 (2009)CrossRef
    41.Cramer A., Eckert S., Gerbeth G.: Flow measurements in liquid metals by means of the ultrasonic Doppler method and local potential probes. Eur. Phys. J. Special Topics 220, 25–41 (2013)CrossRef
    42.Pulugundla G., Heinicke C., Karcher C., Thess A.: Lorentz force velocimetry with a small permanent magnet. Eur. J. Mech. B 41, 23–28 (2013)CrossRef
  • 作者单位:Rainer Hollerbach (1)
    Farzana Khan (1) (2)

    1. Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, UK
    2. Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Continuum Mechanics and Mechanics of Materials
    Structural Mechanics
    Vibration, Dynamical Systems and Control
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Wien
  • ISSN:1619-6937
文摘
We numerically investigate Taylor–Couette flow in a wide-gap configuration, with \({r_i/r_o=1/2}\), the inner cylinder rotating, and the outer cylinder stationary. The fluid is taken to be electrically conducting, and a magnetic field of the form \({B_z\approx(1 + \cos(2\pi z/z_0))/2}\) is externally imposed, where the wavelength \({z_0=50(r_o-r_i)}\). Taylor vortices form where the field is weak, but not where it is strong. As the Reynolds number measuring the rotation rate is increased, the initial onset of vortices involves phase slip events, whereby pairs of Taylor vortices are periodically formed and then drift outward, away from the midplane where \({B_z=0}\). Subsequent bifurcations lead to a variety of other solutions, including ones both symmetric and asymmetric about the midplane. For even larger Reynolds numbers, a different type of phase slip arises, in which vortices form at the outer edges of the pattern and drift inward, disappearing abruptly at a certain point. These solutions can also be symmetric or asymmetric about the midplane and co-exist at the same Reynolds number. Many of the dynamics of these phase slip solutions are qualitatively similar to previous results in geometrically ramped Taylor–Couette flows.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700