用户名: 密码: 验证码:
Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes
详细信息    查看全文
  • 作者:J. Iannacci (1)
    E. Serra (1) (4)
    R. Di Criscienzo (1)
    G. Sordo (1)
    M. Gottardi (1)
    A. Borrielli (2)
    M. Bonaldi (2)
    T. Kuenzig (3)
    G. Schrag (3)
    G. Pandraud (4)
    P. M. Sarro (4)
  • 刊名:Microsystem Technologies
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:20
  • 期:4-5
  • 页码:627-640
  • 全文大小:2,791 KB
  • 参考文献:1. Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:3 CrossRef
    2. Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. Proc. Transducers. 1649-652
    3. Arakawa Y, Suzuki Y, Kasagi N (2004) Micro seismic power generator using electret polymer film. Proc. PowerMEMS. 187-90
    4. Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. Proc. IEEE MEMS. 9-4
    5. Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D Multi-Frequency MEMS Electromechanical Resonator Design. Proc. EuroSimE. 1-
    6. Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. Proc. IEEE SAS. 1-
    7. Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. Proc. IEEE MEMS. 1020-023
    8. Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. Proc. ISAF/ECAPD/PFM. 1-
    9. Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607-612 CrossRef
    10. Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers RJM, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. Proc. IEEE IEDM. 29.5.1-9.5.4
    11. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, Hoboken CrossRef
    12. Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-Silicon vibration energy harvester with integrated frequency-upconverting transducers. Proc. IEEE MEMS. 1269-272
    13. Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE J MEMS 21:1311-320 CrossRef
    14. Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. Proc. PowerMEMS. 364-67
    15. Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectrics Electr Insulation 19:1291-298
    16. Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. Proc. IEEE MEMS. 1301-304
    17. Halvorsen E (2012) Fundamental issues in nonlinear wide-band vibration energy harvesting. Nonlinear sciences, adaptation and self-organizing systems. doi:10.1103/PhysRevE.87.042129
    18. Hoffmann D, Folkmer B, Manoli Y (2009) Fabrication, characterization and modelling of electrostatic micro-generators. IOP J Micromech Microeng 19:11
    19. Iannacci J (2010) Mixed-domain fast simulation of RF and microwave MEMS-based complex networks within standard IC development frameworks. In: Zhurbenko V (ed) Advanced microwave circuits and systems, 1st edn. InTech, Rijeka, pp 313-38
    20. Iannacci J (2013a) Compact Modeling of RF MEMS devices. In: Bechtold T, Schrag G, Feng L (eds) System-level modeling of MEMS, vol 10., 1st ednWiley-VCH Books, Weinheim, pp 191-09 CrossRef
    21. Iannacci J (2013b) Practical Guide to RF–MEMS, 1st edn. Wiley-VCH Books, Weinheim CrossRef
    22. Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic Optimisation of an RF-MEMS Wafer-Level Package. Elsevier Sensors and Actuators A: Physical, Special Issue of Eurosensors XX 2006 Conference, 142:434-41
    23. Iannacci J, Repchankova A, Faes A, Tazzoli A, Meneghesso G, Dalla Betta GF (2010a) Enhancement of RF MEMS switch reliability through an active anti-stiction heat-based mechanism. Microelectron Reliab 50:1599-603 CrossRef
    24. Iannacci J, Gaddi R, Gnudi A (2010b) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Systems 19:526-37 CrossRef
    25. Iannacci J, Faes A, Repchankova A, Tazzoli A, Meneghesso G (2011) An active heat-based restoring mechanism for improving the reliability of RF-MEMS switches. Microelectron Reliab 51:1869-873 CrossRef
    26. Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, Berlin
    27. Koukarenko E, Beeby S, Tudor M, White N, O’Donnell T, Saha T, Kulkani S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Springer Microsystem Technol J 12:1071-077 CrossRef
    28. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. Proc. ISWC. 132-39
    29. Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. Proc. IEEE MEMS. 1277-280
    30. Meirovitch L (2010) Fundamentals of Vibrations. Waveland Press Inc., Long Grove
    31. Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. Proc. IEEE MEMS. 1221-224
    32. Repchankova A, Iannacci J (2009) Heat-based recovery mechanism to counteract stiction of RF-MEMS switches. Proc. DTIP. 176-81
    33. Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, Dordrecht CrossRef
    34. Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. Proc. of Transducers. 2642-645
    35. Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Proc. IEEE MEMS. 1237-240
    36. Tian J, Sosin S, Iannacci J, Gaddi R, Bartek M (2008) RF MEMS wafer-level packaging using through-wafer interconnect. Elsevier Sensors and Actuators A: Physical, Special Issue: Eurosensors XX 2006 Conference. 142:442-51
    37. Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. Proc. IEEE INTELEC. 1-
    38. Tran AT, Wunnicke O, Pandraud G, Nguyen MD, Schellevis H, Sarro PM (2013) Slender piezoelectric cantilevers of high quality AlN layers sputtered on Ti thin film for MEMS actuators. Elsevier Sensors and Actuators A: Physical. doi:10.1016/j.sna.2013.01.047
    39. Wang P, Dai X, Zhao X, Ding G (2009) A micro electromagnetic vibration energy harvester with sandwiched structure and air channel for high energy conversion efficiency. Proc. PowerMEMS. 296-99
    40. Wu H, Tang L, Yang Y, Soh CK (2012) A novel two-degrees-of-freedom piezoelectric energy harvester. J Intell Mater Syst Struct. doi:10.1177/1045389X12457254
    41. Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Tan YK (ed) Sustainable energy harvesting technologies—past, present and future, 1st edn. InTech, Rijeka, pp 25-7
    42. Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481-88 CrossRef
    43. Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per O?, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J Appl Phys 111:7 CrossRef
  • 作者单位:J. Iannacci (1)
    E. Serra (1) (4)
    R. Di Criscienzo (1)
    G. Sordo (1)
    M. Gottardi (1)
    A. Borrielli (2)
    M. Bonaldi (2)
    T. Kuenzig (3)
    G. Schrag (3)
    G. Pandraud (4)
    P. M. Sarro (4)

    1. Fondazione Bruno Kessler-FBK, Center for Materials and Microsystems (CMM), Via Sommarive 18, 38123, Povo, Trento, Italy
    4. Department of Microelectronics Electronic Components, Technology and Materials Lab, Delft University of Technology/DIMES, P.O. Box 5053, 2600 GB, Delft, The Netherlands
    2. Nanoscience-Trento-FBK Division, Institute of Materials for Electronics and Magnetism, Via Sommarive 18, 38123, Povo, Trento, Italy
    3. Institute for Physics of Electrotechnology-TEP, Munich University of Technology-TUM, Arcisstra?e 21, 80290, Munich, Germany
  • ISSN:1432-1858
文摘
In this work we discuss a novel design concept of energy harvester (EH), based on Microsystem (MEMS) technology, meant to convert mechanical energy, available in the form of vibrations scattered in the surrounding environment, into electrical energy by means of the piezoelectric conversion principle. The resonant structure, named four-leaf clover (FLC), is circular and based on four petal-like double mass-spring systems, kept suspended through four straight beams anchored to the surrounding Silicon frame. Differently from standard cantilever-type EHs that typically convert energy uniquely in correspondence with the fundamental vibration frequency, this particular shape is aimed to exploit multiple resonant modes and, thereby, to increase the performance and the operation bandwidth of the MEMS device. A preliminary non-optimized design of the FLC is discussed and physical samples of the sole mechanical resonator, fabricated at the DIMES Technology Center (Delft University of Technology, the Netherlands), are experimentally characterized. Their behaviour is compared against simulations performed in ANSYS Workbench? confirming good accuracy of the predictive method. Furthermore, the electromechanical multiphysical behaviour of the FLC EH is also analysed in Workbench, by adding a layer with piezoelectric conversion properties in the simulation. The measured and simulated data reported in this paper confirm that the MEMS converter exhibits multiple resonant modes in the frequency range below 1?kHz, where most of the environmental vibration energy is scattered, and extracted power levels of 0.2?μW can be achieved as well, in closed-loop conditions. Further developments of this work are expected to fully prove the high-performance of the FLC concept, and are going to be addressed by the authors of this work in the on-going activities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700