用户名: 密码: 验证码:
Analysis of Dynamical and Thermal Processes Driving Fog and Quasi-Fog Life Cycles Using the 2010᾿013 ParisFog Dataset
详细信息    查看全文
  • 作者:J. C. Dupont ; M. Haeffelin ; S. Stolaki ; T. Elias
  • 关键词:Fog ; fog life cycle ; cloud processes ; stratus cloud ; radiative cooling ; turbulence
  • 刊名:Pure and Applied Geophysics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:173
  • 期:4
  • 页码:1337-1358
  • 全文大小:4,406 KB
  • 参考文献:Baker, R., J. Cramer, and J. Peters (2002), Radiation Fog: UPS Airlines Conceptual Models and Forecast Methods. 10th Conference on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., UPS Airlines. [Available online at https://​ams.​confex.​com/​ams/​pdfpapers/​39165.​pdf ].
    Bergot, T., Carrer, D., Noilhan, J., Bougeault, P. (2005) Improved site-specific numerical prediction of fog and low clouds: A feasibility study, Weather and Forecasting, 20, 627–646.CrossRef
    Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O., Mueller, M., Nielsen, NW . (2007), Intercomparison of single-column numerical models for the prediction of radiation fog, J. Appl. Meteorol. 46, 504–521.CrossRef
    Bergot, T . (2012), Small-scale structure of radiation fog: a large-eddy simulation study, Q. J. R. Meteorol. Soc. doi:10.​1002/​qj.​2051 .
    Cuxart, J., and Jiménez, M.A. (2011), Deep radiation fog in a wide closed valley study by numerical modelling and remote sensing, Pure and Applied Geophysics. doi:10.​1007/​s00024-011-0365-4 .
    Dupont, J.C., Haeffelin, M., Drobinski, P., and Besnard, T. (2008), Parametric model to estimate clear-sky longwave irradiance at the surface based on vertical distribution of humidity and temperature, J. Geophys. Res., 113, D07203, doi:10.​1029/​2007JD009046 .
    Dupont, J.-C., Haeffelin, M., Protat, A., Bouniol, D., Boyouk, N., and Morille, Y. (2012), Stratus fog formation and dissipation. A 6-day case study, BLM ISARS special issue, doi:10.​1007/​s10546-012-9699-4 .
    Duynkerke, P.G. (1991), Radiation fog: A comparison of model simulation with detailed observations, Mon. Wea. Rev., 119, 324–341.CrossRef
    Duynkerke, P.G. (1999), Turbulence, radiation and fog in Dutch stable boundary layers, Bound.-Layer Meteor., 90, 447–477.
    Elias, T., Haeffelin, M., Drobinski, P., Gomes, L., Rangognio, J., Bergot, T., Chazette, P., Raut, J-C., Colomb, M. (2009), Particulate contribution to extinction of visible radiation: pollution, haze, and fog. Atmos Res., doi:10.​1016/​j.​atmosres.​2009.​01.​006 .
    Fisher, E.L., and Caplan, P. (1963), An experiment in the numerical prediction of fog and stratus, J. Atmos. Sci., 20, 425–437.CrossRef
    Fuzzi, S., Facchini, M.C., Orsi, G., Lind, J.A., Wobrock, W., Kessel, M., Maser, R., Jaeschke, W., Enderle, K.H., Arends, B.G., Berner, A., Solly, A., Kruisz, C., Reischl, G., Pahl, S., Kaminski, U., Winkler, P., Ogren, J.A., Noone, K.J., Hallberg, A., Fierlinger-Oberlinninger, H., Puxbaum, H., Marzorati, A., Hansson, H.-C., Wiedensohler, A., Svenningsson, I.B., Martinsson, B.G., Schell, D., and Georgii, H.W . (1992), The Po Valley Fog Experiment 1989. An Overview, Tellus, 44B, 448–468.
    Fuzzi, S., Laj, P., Ricci, L., Orsi, G., Heintzenberg, J., Wendisch, M., Yuskiewicz, B., Mertes, S., Orsini, D., Schwanz, M., Wiedensohler, A., Stratmann, F., Berg, O.H., Swietlicki, E., Rank, G., Martinson, B.G., Günther, A., Diersen, J.P., Schell, D., Jaeschke, W., Berner, A., Dusek, U., Galambos, Z., Kruisz, C., Mesfin, N.S., Wowbrock, W., Arends, B., and Ten, B.H., (1998), Overview of the Po Valley fog experiment 1994 (CHEMDROP), Contr. Atmos. Phys. 71, 3–19.
    Goodman, J. (1977), The Microstructure of California Coastal Fog and Stratus, Journal of Applied Meteorology 16(10), 1056–1067.CrossRef
    Guedalia, D., and Bergot, T. (1994), Numerical forecasting of radiation fog. Part II: A comparison of model simulations with several observed fog events, Monthly Weather Rev. 122, 1231–1246.
    Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bott, A., Bendix, J., Müller, M.D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs, W., Toth, G., Cober, S.G. (2007), Fog research: A review of past achievements and Future perspectives, Pure and Applied Geophysics, 164, 1121–1159.CrossRef
    Gultepe, I., Kuhn, T., Pavolonis, M., Calvert, C., Gurka, J., Heymsfield, A.J., Liu, P.S.K., Zhou, B., Ware, R., Ferrier, B., Milbrandt, J., and Bernstein, B . (2014), Ice fog in arctic during FRAM- ICE fog project: aviation and nowcasting applications, B. Am. Meteorol. Soc., 95, 211–226, doi:10.​1175/​BAMS-D-11-00071.​1 .CrossRef
    Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., Colomb, M., Drobinski, P., Dupont, E., Dupont, J-C., Gomes, L., Musson-Genon, L., Pietras, C., Plana-Fattori, A., Protat, A., Rangognio, J., Raut, J-C., Rémy, S., Richard, D., Sciare, J., and Zhang, X . (2010), PARISFOG, shedding new light on fog physical processes, Bull. Amer. Meteor. Soc., 767–782.
    Haeffelin, M., Dupont, JC., Boyouk, N., Baumgardner, D., Gomes, L., Roberts, G., Elias, T. (2012), A comparative Study of radiation fog and quasi-fog formation process during the ParisFog field experiment 2007, PAAG, doi:10.​1007/​s00024-013-0672-z .
    Haeffelin, M., Barthès, L. Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., Drobinski, P., Dufresne, J-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lemaître, Y., Mathieu, A., Morille, Y., Naud, C., Noël, V., O’Hirok, B., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and Vautard, R . (2005), SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Annales Geophysicae, 23, 253–275.CrossRef
    Haeffelin, M., Boyouk, N., Baumgardner, D., Dupont, J-C ., (2013) A comparative study of fog and quasi-fog characteristics during the Paris Fog field experiment 2007, accepted in Pure and Appl. Geoph.
    Healy, R. M., Sciare, J., Poulain, L., Kamili, K., Merkel, M., Müller, T., Wiedensohler, A., Eckhardt, S., Stohl, A., Sarda-Estève, R., McGillicuddy, E., O’Connor, I. P., Sodeau, J. R., and Wenger, J. C . (2012), Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris, Atmos. Chem. Phys., 12, 1681–1700, doi:10.​5194/​acp-12-1681-2012 .CrossRef
    Kelley, N.D., Jonkman, B.J., Scott, G.N., Pichugina, Y.L. (2007) Comparising Pulsed Doppler Lidar with Sodar and Direct Measurements for Wind Assessment. NREL/CP-500-41792, (National Renewable Energy Laboratory, Golden, CO 2007).
    Kokkola, H., Romakkaniemi, S., and Laaksonen, A . (2003), On the formation of radiation fogs under heavily polluted conditions, Atmos. Chem. Phys., 3: 581–589.CrossRef
    Koracin, D., Lewis, J., Thompson, W.T., Dorman, C.E., Businger, J.A. (2000), Transition of stratus into fog along the California Coast: Observations and modeling, J. Atmos. Sci. 58, 1714–1731.CrossRef
    Lee, X., Finigan, J., and Kyaw, T.P.U. , Handbook of micrometeorology, a guide for surface flux measurements and analysis (Kluwer Academic Publishers, Dordrecht 2004).
    Meyer, M.B., and Garland LaLa, G. (1989), Climatological aspects of radiation fog occurrence at Albany, New York, Journal of Climate, 3, 577–586.CrossRef
    Moncrieff, J., Massheder, J., De Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., Verhoef, A . (1997), A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188:589–61.1.
    Musson-Genon, L. (1987), Numerical simulation of a fog event with one-dimensional boundary layer model, Mon. Wea. Rev., 115, 592–607.CrossRef
    Müller, M.D., Masbou, M., and Bott, A., (2010), Three-dimensional fog forecasting in complex terrain, Quart. J. Roy. Meteor. Soc., 136, 2189–2202.CrossRef
    Ohmura, A., Dutton, E.G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner, H., Heimo, A., König-Langlo, G., McArthur, B., Müller, G., Philipona, R., Pinker, R., Whitlock, C.H., Dehne, K., and Wild, M. (1998), Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research, Bull. Am. Meteorol. Soc., 79(10), 2115–2136.CrossRef
    Pagowski, M., Gultepe, I., and King, P . (2004), Analysis and modelling of an extremely dense fog event in southern Ontario, J. Appl. Meteor., 43, 3–16.CrossRef
    Pilié, R.J., Mack, E.J., Kocmond, W.C., Rogers, C.W., and Eadie, W.J. (1975), The life cycle of valley fog. Part I: Micrometeorological characteristics, J. Appl. Meteor., 14, 347–363.CrossRef
    Pinnick, R.G., Hoihjelle, D.L., Fernandez, G., Stenmark, E.B., Lindberg, J.D., and Hoidale, G.B. (1978), Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction, J. Atmos. Sci. 35, 2020–2032.CrossRef
    Roach, W.T . (1976), On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet, Quarterly Journal of the Royal Meteorological Society, 102 (432), 361–372.CrossRef
    Stevens, B., Beljaars, A., Bordoni, S., Holloway, C., Köhler, M., Savic-Jovcic, S.K.V., Zhang, Y. (2006), On the structure of the lower troposphere in the summertiem stratocumulus regime of the Northeast Pacific, Mon. Wea. Rev., 135, 985–1005.CrossRef
    Stolaki, S., I. Pytharoulis, and T. Karacostas (2012), A study of fog characteristicsusing a coupled WRF–COBEL model over Thessaloniki airport, Greece, Pure Appl. Geophys., 169, 961–981.
    Tardif, R., and Rasmussen, R.M . (2007), Event-based climatology of fog in the New York City region, J. Appl. Meteor. Climatol., 46, 1141–1167.CrossRef
    Van der Velde, I.R., Steeneveld, G.J., Wichers Schreur, B.G. J., Holtslag, A.A.M. (2010), Modeling and forecasting the onset and duration of severe radiation fog under frost conditions, Monthly Weather Review, 138, 4237–4253.CrossRef
    Zhang, G.Z, Bian, L.G., Wang, J.Z., Yang, Y.Q., Yao, W.Q., and Xu, X.D . (2005), The boundary layer characteristics in the heavy fog formation process over Beijing and its adjacent areas, Science in China Series D (Earth Sciences) 48, suppl. 2, 88–101.
    Zhou, B., and Ferrier, B.S. (2007), Asymptotic Analysis of Equilibrium in Radiation Fog, Journal of Applied Meteorology and Climatology, 47, 1704–1722.CrossRef
    Zhou, B., Du, J., Ismail, G., and Dimego, G . (2012), Forecast of low visibility and fog from NCEP: Current status and efforts, Pure Appl. Geophys., 169, 895–909.
  • 作者单位:J. C. Dupont (1)
    M. Haeffelin (1)
    S. Stolaki (2)
    T. Elias (3)

    1. IPSL, Palaiseau, France
    2. LMD, Palaiseau, France
    3. HYGEOS, Lille, France
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9136
文摘
The data from suite of in situ sensors, passive and active remote sensing instruments dedicated to document simultaneously radiative and thermo-dynamical processes driving the fog life cycle at the SIRTA Observatory (instrumented site for atmospheric remote sensing research) near Paris during two periods of 6 months are analysed. The study focuses on the analysis of the relative role of key physical processes and their interactions during fog formation, development and dissipation phases. This work presents, from analysis of detailed observations, the range of values that critical parameters have to take for fog and quasi-fog formation. In our study, we consider fog (horizontal visibility lower than 1 km, a dataset of 300 h) and quasi-fog (horizontal visibility ranging from 1 to 2 km, a dataset of 400 h) events induced by radiative cooling (53 events) and stratus lowering (64 events). For the radiative fog events, (with radiative cooling during prefog conditions), we note that the longwave net radiative flux (around −60 ± 5 W/m2) induces a cooling of the surface layer. The vertical structure of this cooling is controlled by dynamics, that is, wind shear and horizontal and vertical velocities. In case of very low mixing (wind speed below 0.6 m/s), the thermal stability is very strong with a temperature inversion around 3.5 °C for 10 m and a humidity gradient reaching 10 % preventing vertical development of the fog layer. For stratus-lowering fog events, the altitude of the stratus layer, the vertical mixing and the absolute value of humidity are driving parameters of the fog formation. Our statistical analysis shows that a stratus cloud with a cloud base around 170 m and with a small cloud-base subsidence rate of 50 m/h leads to fog, whereas a stratus cloud with a base around 800 m agl, with a larger cloud-base subsidence rate of 190 m/h conducts to quasi-fog situations with an important increase of the stratus liquid water path.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700