用户名: 密码: 验证码:
The fish embryo test (FET): origin, applications, and future
详细信息    查看全文
  • 作者:Thomas Braunbeck ; Britta Kais ; Eva Lammer…
  • 关键词:Fish embryo test ; FET ; Validation ; Alternative test method ; OECD guideline ; Acute toxicity ; Teratogenicity ; Genotoxicity ; Endocrine disruption ; Neurotoxicity ; Biotransformation ; Cytochrome P450
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:22
  • 期:21
  • 页码:16247-16261
  • 全文大小:2,205 KB
  • 参考文献:Ahne W (1985) Untersuchungen über die Verwendung von Fischzellkulturen für Toxizitätsbestimmungen zur Einschränkung und Ersatz des Fischtests. Zbl Bakt Hyg 1 Abt Orig B 180:480–504
    Alderton W, Berghmans S, Butler P, Chassaing H, Fleming A, Golder Z, Richards FIG (2010) Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557CrossRef
    Ankley G, Bencic D, Breen M, Collette T, Conolly R, Denslow ND, Edwards SW, Ekman DR, Garcia-Reyero N, Jensen KM, Lazorchak JM, Martinovic D, Miller DH, Perkins EJ, Orlando EF, Vielleneuve DL, Wang RL, Watanabe KH (2009) Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat Toxicol 92:168–178CrossRef
    Asnani A, Peterson RT (2014) The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech 7:763–767CrossRef
    Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288CrossRef
    Ball JS, Stedman DB, Hillegass JM, Zhang CX, Panzica-Kelly J, Coburn A, Enright BP, Tornesi B, Amouzadeh HR, Hetheridge M, Gustafson AL, Augustine-Rauch KA (2014) Fishing for teratogens: a consortium effort for a harmonized zebrafish developmental toxicology assay. Toxicol Sci 139:210–219CrossRef
    Baumann L, Knörr S, Keiter S, Nagel T, Rehberger K, Volz S, Oberrauch S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T (2014a) Persistence of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the androgen 17β-trenbolone. Environ Toxicol Chem. doi:10.​1002/​etc.​2698:​
    Baumann L, Knörr S, Keiter S, Rehberger K, Volz S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T (2014b) Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol. Toxicol Appl Pharmacol 278:230–237CrossRef
    Belanger SE, Balon EK, Rawlings JM (2010) Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat Toxicol 97:88–95CrossRef
    Belanger SE, Rawlings JM, Carr GJ (2013) Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ Toxicol Chem 32:1768–1783CrossRef
    Boettcher M, Kosmehl T, Braunbeck T (2011) Low-dose effects and biphasic effect profiles: is trenbolone a genotoxicant. Mutat Res 723:152–157CrossRef
    Bols NC, Boliska SA, Dixon DG, Hodson PV, Kaiser GLE (1985) The use of fish cell cultures as an indication of contaminant toxicity to fish. Aquat Toxicol 6:147–155CrossRef
    Bourrachot S, Brion F, Pereira S, Floriani M, Camilleri V, Cavalié I, Palluel O, Adam-Guillermin C (2014) Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). Aquat Toxicol 154:1–11CrossRef
    Brannen KC, Charlap JH, Lewis EM (2013) Zebrafish teratogenicity testing. Methods Mol Biol 947:383–401CrossRef
    Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. Altex 22:87–102
    Brion F, Le Page Y, Piccini B, Cardoso O, Tong S-K, Chung B-C, Kah O (2012) Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One 7:e36069. doi:10.​1371/​journal.​pone.​0036069 CrossRef
    Busch W, Duis K, Fenske M, Maack G, Legler J, Padilla S, Strähle U, Witters H, Scholz S (2011) The zebrafish embryo model in toxicology and teratology, September 2–3, 2010, Karlsruhe, Germany. Reprod Toxicol 31:585–588CrossRef
    Busquet F, Strecker R, Rawlings JM, Belanger SE, Braunbeck T, Carr GJ, Cenijn P, Fochtman P, Gourmelon A, Hübler N, Kleensang A, Knöbel M, Kussatz C, Legler J, Lillicrap A, Martínez-Jerónimo F, Polleichtner C, Rzodeczko H, Salinas E, Schneider KE, Scholz S, van den Brandhof E-J, van der Ven LTM, Walter-Rohde S, Weigt S, Witters H, Halder M (2014) OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Reg Tox Pharm 69:496–511CrossRef
    Campinho MA, Power DM (2013) Waterborne exposure of zebrafish embryos to micromole concentrations of ioxynil and diethylstilbestrol disrupts thyrocyte development. Aquat Toxicol 140–141:279–287CrossRef
    Castano A, Bols N, Braunbeck T, Dierichx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersil PP, Repeto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology—the report and recommendations of ECVAM workshop 47. ATLA 31:317–351
    Chan WK, Chan KM (2012) Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat Toxicol 108:106–111CrossRef
    Chen Q, Yu L, Yang L, Zhou B (2012) Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquat Toxicol 110–111:141–148CrossRef
    Cohen SP, LaChappelle AR, Walker BS, Lassiter CS (2014) Modulation of estrogen causes disruption of craniofacial chondrogenesis in Danio rerio. Aquat Toxicol 152:113–120CrossRef
    Dambly-Chaudière C, Sapède D, Soubiran F, Decorde K, Gompel N, Ghysen A (2003) The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell 95:579–587CrossRef
    de Esch C, Slieker R, Wolterbeek APM, Woutersen RA, de Groot D (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotox Teratol 34:545–553CrossRef
    Delvecchio C, Tiefenbach J, Krause HM (2011) The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev Technol 9:354–361CrossRef
    DIN (2001) German standard methods for the examination of water, waste water and sludge—subanimal testing (group T)—part 6: toxicity to fish. Determination of the non-acute-poisonous effect of waste water to fish eggs by dilution limits (T 6). DIN 38415–6; German Standardization Organization
    Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12CrossRef
    Dong W, Macaulay LJ, Kwok KW, Hinton DE, Stapleton HM (2013) Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Auqat Toxicol 132–133:190–199CrossRef
    Embry MR, Belanger SE, Braunbeck T, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87CrossRef
    EU (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (EU Water Framework Directive). Off J EU 327:1–72
    EU (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off J EU 396:1–849
    EU (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off J EU 342:59–209
    EU (2010) Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J EU 276:33–79
    Froehlicher M, Liedtke A, Groth KJ, Neuhauss SCF, Segner H, Eggen RIL (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95:307–319CrossRef
    Gao K, Brandt I, Goldstone JV, Jönsson ME (2011) Cytochrome P450 1A, 1B, and 1C mRNA induction patterns in three-spined stickleback exposed to a transient and a persistent inducer. Comp Biochem Phys 154C:42–55
    Ghysen A, Dambly-Chaudière C (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol 14:67–73CrossRef
    Goldstein JA, Faletto MB (1993) Advances in mechanisms of activation and deactivation of environmental chemicals. Environ Health Perspect 100:169–176CrossRef
    Görge G, Nagel R (1990) Toxicity of lindane, atrazine, and deltamethrin to early life stages of zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 20:246–255CrossRef
    Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178CrossRef
    Gustafson AL, Stedman DB, Ball J, Hillegass JM, Flood A, Zhang CX, Panzica-Kelly J, Cao J, Coburn A, Enright BP, Tornesi MB, Hetheridge M, Augustine-Rauch KA (2012) Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay—progress report on phase I. Reprod Toxicol 33:155–164CrossRef
    Häfeli N, Schwartz P, Burkhardt-Holm P (2011) Embryotoxic and genotoxic potential of sewage system biofilm and river sediment in the catchment area of a sewage treatment plant in Switzerland. Ecotoxicol Environ Saf 74:1271–1279CrossRef
    Hanisch K, Küster E, Altenburger R, Gündel U (2010) Proteomic signatures of the zebrafish (Danio rerio) embryo: sensitivity and specificity in toxicity assessment of chemicals. Int J Proteomics 2010:1–13CrossRef
    Henn K, Braunbeck T (2011) Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol 153C:91–98
    Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, Strähle U (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environ Sci Technol 47:3316–3325CrossRef
    Hong CC (2009) Large-scale small-molecule screen using zebrafish embryos. Methods Mol Biol 486:43–55CrossRef
    Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987CrossRef
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229CrossRef
    Islinger M (2001) Nachweis Estrogen-induzierter Genexpression in Fischen und Hepatocytenprimärkulturen als Marker für endokrin wirksam Substanzen in der Umwelt. Dissertation Thesis, Ruprecht-Karls-Universität Heidelberg (in German), Heidelberg, 149 pp
    ISO (2007) Water quality—determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio). ISO 15088
    Ito T, Handa H (2012) Deciphering the mystery of thalidomide teratogenicity. Congen Anomal 52:1–7CrossRef
    Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350CrossRef
    Ito T, Ando H, Handa H (2011) Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci 68:1569–1579CrossRef
    Jönsson ME, Jenny MJ, Woodin BR, Hahn ME, Stegeman JJ (2007) Role of AHR2 in the expression of novel cytochrome P450 1 family genes, cell cycle genes, and morphological defects in developing zebrafish exposed to 3,3′,4,4′,5- pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 100:180–193CrossRef
    Kais B, Schneider KE, Keiter S, Henn K, Ackermann C, Braunbeck T (2013) DMSO modifies the permeability of the zebrafish (Danio rerio) chorion—implications for the fish embryo test (FET). Aquat Toxicol 140–141:229–238CrossRef
    Keiter S, Rastall A, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube River. A pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res Int 13:308–319CrossRef
    Klee N, Gustavsson L, Kosmehl T, Engwall M, Erdinger L, Braunbeck T, Hollert H (2004) Changes in toxicity and genotoxicity of industrial sewage sludge samples containing nitro- and amino-aromatic compounds following treatment in bioreactors with different oxygen regimes. Environ Sci Pollut Res 5:313–320CrossRef
    Klüver N, König M, Ortmann J, Massei R, Yu H, Paschke A, Kühne R, Scholz S (2014a) A systematic data analysis of fish embryo acute toxicity tests to define and improve the application domain. Environ Sci Technol submitted
    Klüver N, Ortmann J, Paschke H, Renner P, Ritter AP, Scholz S (2014b) Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos. PLoS One 9(3):e90619CrossRef
    Knöbel M, Busser FJM, Rico-Rico A, Kramer NI, Hermens JLM, Hafner C, Tanneberger K, Schirmer K, Scholz S (2012) Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ Sci Technol 46:9690–9700CrossRef
    Kosmehl T, Krebs F, Werner M, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine river sediments extracts using the comet assay with permanent fish cell lines (RTG-2 and RTL-W1) and the Ames test. J Soils Sediments 4:84–94CrossRef
    Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25:2097–2106CrossRef
    Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res 650:1–14CrossRef
    Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test. Comp Biochem Physiol 149C:196–209
    Lange M, Gebauer W, Markl J, Nagel R (1995) Comparison of testing acute toxicity on embryo of zebrafish, Brachydanio rerio and RGT-2 cytotoxicity as possible alternatives to the acute fish test. Chemosphere 30(11):2087–2102CrossRef
    Langheinrich U (2003) Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 25:904–912CrossRef
    Lessman CA (2011) The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today 93:268–280CrossRef
    Liu C, Yu H, Zhang X (2013) Zebrafish embryos/larvae for rapid determination of effects on hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis: mRNA expression. Chemosphere 93:2327–2332CrossRef
    Maack G, Segner H (2004) Life-stage-dependent sensitivity of zebrafish (Danio rerio) to estrogen exposure. Comp Biochem Physiol 139C:47–55
    McGee SP, Cooper EM, Stapleton HM, Volz DC (2012) Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure. Environ Health Perspect 120:1585–1591CrossRef
    Miura GI, Yelon D (2011) A guide to analysis of cardiac phenotypes in the zebrafish embryo. Methods Cell Biol 101:161–180CrossRef
    Nagel R (1986) Untersuchungen zur Eiproduktion beim Zebrabaerbling (Brachydanio rerio, Ham.-Buch.). J Appl Ichthyol 2:173–181CrossRef
    Nagel R (1997) Development of a replacement method for the acute fish test. German Federal Ministry for Science and Education; project no. 0310506 A (in German)
    Nagel R (2002) DarT: The embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19:38–48
    Nagel R, Isberner C (1998) Testing of chemicals with fish - a critical evaluation of tests with special regard to zebrafish. In: Braunbeck T, Streit B, Hinton DE (eds) Fish ecotoxicology. Experientia Suppl. Series. Birkhäuser, Basel, pp 337–352CrossRef
    Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, Appel B (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286:114–135CrossRef
    OECD (1992) OECD guideline for the testing of chemicals. Section 2: effects on biotic systems. OECD Test Guideline 203: fish, acute toxicity test. Paris, France: Organization for Economic Cooperation and Development
    OECD (2011a) Validation report (phase 1) for the zebrafish embryo toxicity test. Part 2: ENV/JM/MONO (2011)40. Series on Testing and Assessment 157:185 pp
    OECD (2011b) Validation report (phase 1) for the zebrafish embryo toxicity test. Part I: ENV/JM/MONO (2011)37. Series on Testing and Assessment 157:123 pp
    OECD (2012a) Annexes to the validation report (phase 2) for the zebrafish embryo toxicity test: ENV/JM/MONO (2012)25/ANN. Series on Testing and Assessment 179:362 pp
    OECD (2012b) Fish toxicity framework. Series on Testing and Assessment-ENV/JM/MONO (2012)16 171:174 pp
    OECD (2012c) Validation report (phase 2) for the zebrafish embryo toxicity test: ENV/JM/MONO (2012)25. Series on Testing and Assessment 57 pp
    OECD (2013) OECD Guidelines for the testing of chemicals. Section 2: effects on biotic systems test no. 236: Fish embryo acute toxicity (FET) test. Paris, France: Organization for Economic Cooperation and Development
    Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, Janssens V, Costagliola S (2013) Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol 372:203–216CrossRef
    Osterauer M, Faßbender C, Braunbeck T, Köhler H-R (2011) Genotoxicity of platinum in embryos of zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis). Sci Total Environ 409:2114–2119CrossRef
    Otte J, Schmidt A, Hollert H, Braunbeck T (2010) Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (Danio rerio). Aquat Toxicol 100:38–50CrossRef
    Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotox Teratol 33:624–630CrossRef
    Pei DS, Strauss PR (2013) Zebrafish as a model system to study DNA damage and repair. Mutat Res 743–744:1–9
    Pereira S, Bourrachot S, Cavalie I, Plaire D, Dutilleul M, Gilbin R, Adam-Guillermin C (2011) Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. Environ Toxicol Chem 30:2831–2837CrossRef
    Porazzi P, Calebiro D, Benato F, Tiso N, Persani L (2009) Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol 27:14–23CrossRef
    Raldua D, Babin PJ (2009) Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol 43:6844–6850CrossRef
    Raldúa D, Thienpont B, Babin PJ (2012) Zebrafish eleutheroembryos as an alternative system for screening chemicals disrupting the mammalian thyroid gland morphogenesis and function. Reprod Toxicol 33:188–197CrossRef
    Reinardy HC, Dharamshi J, Jha AN, Henry TB (2013a) Changes in expression profiles of genes associated with DNA repair following induction of DNA damage in larval zebrafish Danio rerio. Mutagenesis 28:601–618CrossRef
    Reinardy HC, Syrett JR, Jeffree RA, Henry TB, Jha AN (2013b) Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes. Aquat Toxicol 126:224–230CrossRef
    Rocha PS, Luvizotto GL, Kosmehl T, Böttcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tiete River (Sao Paulo, Brazil): in vitro comet assay versus in situ micronucleus assay studies. Ecotox Environ Saf 72:1842–1848CrossRef
    Rubinstein AL (2006) Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol 2:231–240CrossRef
    Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London, 238 pp
    Schiller V, Wichmann A, Kriehuber R, Muth-Köhne E, Giesy JP, Hecker M, Fenske M (2013a) Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption. Comp Biochem Physiol 157C:41–53
    Schiller V, Wichmann A, Kriehuber R, Schäfers C, Fischer R, Fenske M (2013b) Transcriptome alterations in zebrafish embryos after exposure to environmental estrogens and anti-androgens can reveal endocrine disruption. Reprod Toxicol 42:210–223CrossRef
    Schiller V, Zhang X, Hecker M, Schäfers C, Fischer R, Fenske R (2014) Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption. Aquat Toxicol 155:62–72CrossRef
    Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183CrossRef
    Scholz S, Mayer I (2008) Molecular biomarkers of endocrine disruption in small model fish. Toxicology 293:57–70
    Scholz S, Fischer S, Gundel U, Kuster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15:394–404CrossRef
    Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, García-Franco M, Guinea J, Klüver N, Schirmer K, Tanneberger K, Tobor-Kapłon M, Witters H, Belanger S, Benfenati E, Creton S, Cronin MTD, Eggen RIL, Embry M, Ekman D, Gourmelon A, Halder M, Hardy B, Hartung T, Hubesch B, Jungmann D, Lampi MA, Lee L, Léonard M, Küster E, Lillicrap A, Luckenbach T, Murk AJ, Navas JM, Peijnenburg W, Repetto G, Salinas E, Schüürmann G, Spielmann H, Tollefsen KE, Walter-Rohde S, Whale G, Wheeler JR, Winter MJ (2013) A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Parmacol 67:506–530CrossRef
    Schulte C, Nagel R (1994) Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test - preliminary results. ATLA 22:12–19
    Segner H (2009) Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Phys 149C:187–195
    Seitz N, Böttcher M, Keiter S, Kosmehl T, Manz W, Hollert H, Braunbeck T (2008) A novel statistical approach for the evaluation of comet assay data. Mutat Res 652:38–45CrossRef
    Selderslaghs IWT, Van Rompay AR, De Coen W, Witters HE (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28:308–332CrossRef
    Selderslaghs IWT, Hooyberghs J, De Coen W, Witters HE (2010) Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol Teratol 32:460–471CrossRef
    Selderslaghs I, Hooyberghs J, Blust R, Witters HE (2013) Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 37:44–56CrossRef
    Selderslaghs IWT, Blusb R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryo toxicity using a training set of 27 compounds. Reprod Toxicol 33:142–154CrossRef
    Simon O, Massarin S, Coppin F, Hinton TG, Gilbin R (2011) Investigating the embryo/larval toxic and genotoxic effects of γ irradiation on zebrafish eggs. J Environ Radiact 102:1039–1044CrossRef
    Sipes NS, Padilla S, Knudsen TB (2011) Zebrafish: as an integrative model for twenty-first century toxicity testing. Birth Defects Res 93C:256–267CrossRef
    Spielmann H, Seiler A, Bremer S, Hareng L, Hartung T, Ahr H, Faustman E, Haas U, Moffat GJ, Nau H, Vanparys P, Piersma A, Sintes JR, Stuart J (2006) The practical application of three validated in vitro embryo toxicity tests. The report and recommendations of an ECVAM/ZEBET workshop (ECVAM workshop 57). Altern Lab Anim 34:527–538
    Staudt D, Stainier D (2012) Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 46:397–418CrossRef
    Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2011) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:245–153
    Strecker R, Weigt S, Braunbeck T (2013) Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide. Toxicol Appl Phamracol 268:221–231CrossRef
    UK Environment Agency UE (2006) Integrated Pollution Prevention & Control (IPPC)—guidance on the use of direct toxicity assessment in PPC impact assessments. Available at www.​publications.​environment-agency.​gov.​uk . 44 pp
    Tanneberger K, Knöbel M, Busser FJ, Sinnige TL, Hermens JL, Schirmer K (2013) Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ Sci Technol 47:1110–1119CrossRef
    Terrien X, Fini JB, Demeneix BA, Schramm KW, Prunet P (2011) Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids. Aquat Toxicol 105:13–20CrossRef
    Thienpont B, Tingaud-Sequeira A, Prats E, Barata C, Babin PJ, Raldua D (2011) Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol 45:7525–7532CrossRef
    Thienpont B, Barata C, Raldúa D (2013) Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo. Toxicol Appl Phamracol 269:169–175CrossRef
    Tierney KB (2011) Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta 1812:381–389CrossRef
    Tierney KB, Singh CR, Ross PS, Kennedy CJ (2007) Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat Toxciol 81:55–64CrossRef
    Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ (2010) Olfactory toxicity in fishes. Aquat Toxicol 96:2–26CrossRef
    Tu S, Chi NC (2012) Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 84
    Usenko CY, Hopkins DC, Trumble SJ, Bruce ED (2012) Hydroxylated PBDEs induce developmental arrest in zebrafish. Toxicol Appl Pharmacol 262:43–51CrossRef
    Vincze K, Gehring M, Braunbeck T (2014) (Eco) toxicological effects of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) in zebrafish (Danio rerio) and permanent fish cell cultures. Environ Sci Pollut Res 21:8233–8241CrossRef
    Wang Q, Liang K, Liu J, Yang L, Guo Y, Liu C, Bingsheng Z (2013) Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis. Aquat Toxicol 126:207–213CrossRef
    Weigt S, Busquet F, von Landenberg F, Braunbeck T, Huebler N, Broschard T (2008) Application of human and rat liver microsomes in teratogenicity testing using zebrafish Danio rerio embryos (mDarT). Toxicol Lett 180S:S96–S97CrossRef
    Weigt S, Hubler N, von Landenberg F, Braunbeck T, Broschard T (2009) Teratogenic effects of metabolically activated trimethadione in zebrafish (Danio rerio). Toxicol Lett 189:S143CrossRef
    Weigt S, Huebler N, Braunbeck T, von Landenberg F, Broschard TH (2010) Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos. Toxicology 275:36–49CrossRef
    Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2011) Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36CrossRef
    Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2012) Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod Toxicol 33:133–141CrossRef
    Wilkinson RN, Jopling C, van Eeden FJ (2014) Zebrafish as a model of cardiac disease. Prog Mol Biol Transl Sci 124:65–91CrossRef
    Yan W, Zhou Y, Yang J, Li S, Hu D, Wang J, Chen J, Li G (2012) Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis in zebrafish larvae. Chemosphere 87:1301–1307CrossRef
    Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28:245–253CrossRef
    Yu L, Chen M, Liu Y, Gui W, Zhu G (2013) Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquat Toxicol 138–139:35–42CrossRef
    Zheng X, Zhu Y, Liu C, Liu H, Giesy JP, Hecker M, Lam MH, Yu H (2012) Accumulation and biotransformation of BDE-47 by zebrafish larvae and teratogenicity and expression of genes along the hypothalamus-pituitary-thyroid axis. Environ Sci Technol 46:12943–1251CrossRef
    Zhong H, Lin S (2011) Chemical screening with zebrafish embryos. Methods Mol Biol 716:193–205CrossRef
  • 作者单位:Thomas Braunbeck (1)
    Britta Kais (1)
    Eva Lammer (1)
    Jens Otte (1)
    Katharina Schneider (1)
    Daniel Stengel (1)
    Ruben Strecker (1)

    1. Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Originally designed as an alternative for the acute fish toxicity test according to, e.g., OECD TG 203, the fish embryo test (FET) with the zebrafish (Danio rerio) has been optimized, standardized, and validated during an OECD validation study and adopted as OECD TG 236 as a test to assess toxicity of embryonic forms of fish. Given its excellent correlation with the acute fish toxicity test and the fact that non-feeding developmental stages of fish are not categorized as protected stages according to the new European Directive 2010/63/EU on the protection of animals used for scientific purposes, the FET is ready for use not only for range-finding but also as a true alternative for the acute fish toxicity test, as required for a multitude of national and international regulations. If—for ethical reasons—not accepted as a full alternative, the FET represents at least a refinement in the sense of the 3Rs principle. Objections to the use of the FET have mainly been based on the putative lack of biotransformation capacity and the assumption that highly lipophilic and/or high molecular weight substances might not have access to the embryo due to the protective role of the chorion. With respect to bioactivation, the only substance identified so far as not being activated in the zebrafish embryo is allyl alcohol; all other biotransformation processes that have been studied in more detail so far were found to be present, albeit, in some cases, at lower levels than in adult fish. With respect to larger molecules, the extension of the test duration to 96 h (i.e., beyond hatch) has—at least for the substances tested so far—compensated for the reduced access to the embryo; however, more research is necessary to fully explore the applicability of the FET to substances with a molecular weight >3 kDa as well as substances with a neurotoxic mode of action. An extension of the endpoints to also cover sublethal endpoints makes the FET a powerful tool for the detection of teratogenicity, dioxin-like activity, genotoxicity and mutagenicity, neurotoxicity, as well as various forms of endocrine disruption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700