用户名: 密码: 验证码:
Optimal methods for fitting probability distributions to propagule retention time in studies of zoochorous dispersal
详细信息    查看全文
  • 作者:Duarte S. Viana ; Luis Santamaría ; Jordi Figuerola
  • 关键词:Seed dispersal ; Dispersal kernel ; Probability distribution ; Endozoochory ; Epizoochory ; Gut passage time
  • 刊名:BMC Ecology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:1,265 KB
  • 参考文献:1.Cousens RD, Hill J, French K, Bishop ID. Towards better prediction of seed dispersal by animals. Funct Ecol. 2010;24:1163–70.CrossRef
    2.Nathan R, Muller-Landau HC. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol. 2000;15:278–85.CrossRef PubMed
    3.Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. Mechanisms of long-distance seed dispersal. Trends Ecol Evol. 2008;23:638–47.CrossRef PubMed
    4.Viana DS, Santamaría L, Michot TC, Figuerola J. Allometric scaling of long-distance seed dispersal by migratory birds. Am Nat. 2013;181:649–62.CrossRef PubMed
    5.Will H, Tackenberg O. A mechanistic simulation model of seed dispersal by animals. J Ecol. 2008;96:1011–22.CrossRef
    6.Bilton DT, Freeland JR, Okamura B. Dispersal in freshwater invertebrates. Annu Rev Ecol Syst. 2001;32:159–81.CrossRef
    7.Figuerola J, Green AJ. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwat Biol. 2002;47:483–94.CrossRef
    8.Howe HF, Smallwood J. Ecology of seed dispersal. Annu Rev Ecol Syst. 1982;13:201–28.CrossRef
    9.Levin SA, Muller-Landau HC, Nathan R, Chave J. The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst. 2003;34:575–604.CrossRef
    10.Van Leeuwen CHA, van der Velde G, van Groenendael JM, Klaassen M. Gut travellers: internal dispersal of aquatic organisms by waterfowl. J Biogeogr. 2012;39:2031–40.CrossRef
    11.Costa JM, Ramos JA, da Silva LP, Timoteo S, Araújo PM, Felgueiras MS, Rosa A, Matos C, Encarnação P, Tenreiro PQ, et al. Endozoochory largely outweighs epizoochory in migrating passerines. J Avian Biol. 2014;45:59–64.CrossRef
    12.Herrera CM. Seed dispersal by vertebrates. In: Herrera CM, Pellmyr O, editors. Plant-animal interactions: an evolutionary approach. Oxford: Blackwell; 2002. p. 185–208.
    13.Jacobson B, Peres-Neto P. Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landscape Ecol. 2010;25:495–507.CrossRef
    14.Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C, et al. Reid’s paradox of rapid plant migration. Bioscience. 1998;48:13–24.CrossRef
    15.Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27:47–56.CrossRef PubMed
    16.Engler R, Hordijk W, Guisan A. The MIGCLIM R package—seamless integration of dispersal constraints into projections of species distribution models. Ecography. 2012;35:872–8.CrossRef
    17.Nobis MP, Normand S. KISSMig—a simple model for R to account for limited migration in analyses of species distributions. Ecography. 2014;37:1282–7.CrossRef
    18.Guttal V, Bartumeus F, Hartvigsen G, Nevai AL. Retention time variability as a mechanism for animal mediated long-distance dispersal. PLoS One. 2011;6:e28447.CrossRef PubMedCentral PubMed
    19.Soons MB, van der Vlugt C, van Lith B, Heil GW, Klaassen M. Small seed size increases the potential for dispersal of wetland plants by ducks. J Ecol. 2008;96:619–27.CrossRef
    20.Sorensen AE. Seed dispersal by adhesion. Annu Rev Ecol Syst. 1986;17:443–63.CrossRef
    21.Charalambidou I, Ketelaars HAM, Santamaría L. Endozoochory by ducks: influence of developmental stage of Bythotrephes diapause eggs on dispersal probability. Divers Distrib. 2003;9:367–74.CrossRef
    22.Charalambidou I, Santamaria L, Langevoord O. Effect of ingestion by five avian dispersers on the retention time, retrieval and germination of Ruppia maritima seeds. Funct Ecol. 2003;17:747–53.CrossRef
    23.Karasov WH. Digestion in birds: chemical and physiological determinants and ecological implications. Stud Avian Biol. 1990;13:391–415.
    24.Charalambidou I, Santamaria L, Jansen C, Nolet BA. Digestive plasticity in Mallard ducks modulates dispersal probabilities of aquatic plants and crustaceans. Funct Ecol. 2005;19:513–9.CrossRef
    25.Figuerola J, Green AJ. Effects of premigratory fasting on the potential for long distance dispersal of seeds by waterfowl: an experiment with marbled teal. Revue D Ecologie-La Terre Et La Vie. 2005;60:283–7.
    26.Kleyheeg E, van Leeuwen CHA, Morison MA, Nolet BA, Soons MB. Bird-mediated seed dispersal: reduced digestive efficiency in active birds modulates the dispersal capacity of plant seeds. Oikos. 2014;124(7):899–907.CrossRef
    27.Van Leeuwen CHA, Tollenaar ML, Klaassen M. Vector activity and propagule size affect dispersal potential by vertebrates. Oecologia. 2012;170:101–9.CrossRef PubMedCentral PubMed
    28.Westcott DA, Bentrupperbaumer J, Bradford MG, McKeown A. Incorporating patterns of disperser behaviour into models of seed dispersal and its effects on estimated dispersal curves. Oecologia. 2005;146:57–67.CrossRef PubMed
    29.Fischer SF, Poschlod P, Beinlich B. Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol. 1996;33:1206–22.CrossRef
    30.Manzano P, Malo JE. Extreme long-distance seed dispersal via sheep. Front Ecol Environ. 2006;4:244–8.CrossRef
    31.Tackenberg O, Römermann C, Thompson K, Poschlod P. What does diaspore morphology tell us about external animal dispersal? Evidence from standardized experiments measuring seed retention on animal-coats. Basic Appl Ecol. 2006;7:45–58.CrossRef
    32.Kays R, Jansen PA, Knecht EMH, Vohwinkel R, Wikelski M. The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers. Acta Oecol. 2011;37:625–31.CrossRef
    33.Rawsthorne J, Roshier DA, Murphy SR. A simple parametric method for reducing sample sizes in gut passage time trials. Ecology. 2009;90:2328–31.CrossRef PubMed
    34.Rodríguez-Pérez J, Larrinaga AR, Santamaría L. Effects of frugivore preferences and habitat heterogeneity on seed rain: a multi-scale analysis. PLoS One. 2012;7:e33246.CrossRef PubMedCentral PubMed
    35.Santamaría L, Rodriguez-Perez J, Larrinaga AR, Pias B. Predicting spatial patterns of plant recruitment using animal-displacement kernels. PLoS One. 2007;2(e1008):1001–9.
    36.Uriarte M, Anciães M, da Silva MTB, Rubim P, Johnson E, Bruna EM. Disentangling the drivers of reduced long-distance seed dispersal by birds in an experimentally fragmented landscape. Ecology. 2011;92:924–37.CrossRef PubMed
    37.Figuerola J, Charalambidou I, Santamaria L, Green A. Internal dispersal of seeds by waterfowl: effect of seed size on gut passage time and germination patterns. Naturwissenschaften. 2010;97:555–65.CrossRef PubMed
    38.Alerstam T, Rosén M, Bäckman J, Ericson PGP, Hellgren O. Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol. 2007;5:e197.CrossRef PubMedCentral PubMed
    39.Delignette-Muller ML, Pouillot qR, Denis J-B, Dutang C. Fitdistrplus: help to fit of a parametric distribution to non-censored or censored data. R package version 0.10. http://​www.​CRANR-projectorg/​package=​fitdistrplus . 2014.
    40.Delignette-Muller ML, Dutang C. Fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64(4):1–34.CrossRef
    41.Helsel DR. Nondetects and data analysis. Statistics for censored environmental data. 1st ed. Wiley: Interscience; 2005.
    42.Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data. 2nd ed. Springer: Science & Business Media. 2003.
    43.R Development Core Team. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL http://​www.​R-projectorg . 2015.
    44.Carvalho L. kolmim: An improved evaluation of Kolmogorov’s distribution. R package version 0.2. http://​www.​CRANR-projectorg/​package=​kolmim . 2014.
    45.Carnell R. lhs: Latin Hypercube Samples. R package version 0.10. http://​www.​CRANR-projectorg/​package=​lhs . 2012.
  • 作者单位:Duarte S. Viana (1)
    Luis Santamaría (1)
    Jordi Figuerola (1) (2)

    1. Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio, s/n, 41092, Seville, Spain
    2. CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
  • 刊物主题:Ecology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1472-6785
文摘
Background Propagule retention time is a key factor in determining propagule dispersal distance and the shape of “seed shadows”. Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700