用户名: 密码: 验证码:
Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells
详细信息    查看全文
  • 作者:Mei Yang (1) (2)
    Jingqi Chen (1)
    Fang Su (3)
    Bin Yu (2)
    Fengxi Su (1)
    Ling Lin (1) (4)
    Yujie Liu (1)
    Jian-Dong Huang (2)
    Erwei Song (1)
  • 刊名:Molecular Cancer
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:10
  • 期:1
  • 全文大小:589KB
  • 参考文献:1. Lin EY, Pollard JW: Tumor-associated macrophages press the angiogenic switch in breast cancer. / Cancer Res 2007, 67:5064-066. CrossRef
    2. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. / Cancer Res 1996, 56:4625-629.
    3. Allavena P, Sica A, Solinas G, Porta C, Mantovani A: The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. / Crit Rev Oncol Hematol 2008, 66:1-. CrossRef
    4. O'Brien J, Schedin P: Macrophages in breast cancer: do involution macrophages account for the poor prognosis of pregnancy-associated breast cancer? / J Mammary Gland Biol Neoplasia 2009, 14:145-57. CrossRef
    5. Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. / Front Biosci 2008, 13:453-61. CrossRef
    6. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R: Targeting tumor-associated macrophages as a novel strategy against breast cancer. / J Clin Invest 2006, 116:2132-141. CrossRef
    7. Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. / J Pathol 2002, 196:254-65. CrossRef
    8. Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW: The macrophage growth factor CSF-1 in mammary gland development and tumor progression. / J Mammary Gland Biol Neoplasia 2002, 7:147-62. CrossRef
    9. Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. / Nat Rev Cancer 2004, 4:71-8. CrossRef
    10. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. / Nat Rev Cancer 2009, 9:239-52. CrossRef
    11. Joimel U, Gest C, Soria J, Pritchard LL, Alexandre J, Laurent M, Blot E, Cazin L, Vannier JP, Varin R, / et al.: Stimulation of angiogenesis resulting from cooperation between macrophages and MDA-MB-231 breast cancer cells: proposed molecular mechanism and effect of tetrathiomolybdate. / BMC Cancer 10:375.
    12. Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, Markowitz D, Liu C, Chen T, Chuang TH, Xiang R, Reisfeld RA: The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. / Oncogene 29:662-73.
    13. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ: Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. / Leukemia 2006, 20:1487-495. CrossRef
    14. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. / Kidney Int 78:838-48.
    15. Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M, Li Q, Friend S, George TC, Klein E, Scheynius A, Gabrielsson S: Exosomes Containing Glycoprotein 350 Released by EBV-Transformed B Cells Selectively Target B Cells through CD21 and Block EBV Infection In Vitro. / J Immunol 2011,186(1):73-2. CrossRef
    16. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. / Nat Cell Biol 2007, 9:654-59. CrossRef
    17. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. / PLoS One 5:e13247.
    18. Gourzones C, Gelin A, Bombik I, Klibi J, Verillaud B, Guigay J, Lang P, Temam S, Schneider V, Amiel C, / et al.: Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. / Virol J 7:271.
    19. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, / et al.: Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. / Biol Reprod 2009, 81:717-29. CrossRef
    20. Ambros V: The functions of animal microRNAs. / Nature 2004, 431:350-55. CrossRef
    21. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I: A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. / Cell 2005, 123:819-31. CrossRef
    22. Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E: An optimized isolation and labeling platform for accurate microRNA expression profiling. / Rna 2005, 11:1461-470. CrossRef
    23. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, / et al.: Genomic instability in laminopathy-based premature aging. / Nature medicine 2005, 11:780-85. CrossRef
    24. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT: Nanostructural and transcriptomic analyses of human saliva derived exosomes. / PLoS One 2010, 5:e8577. CrossRef
    25. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. / Cancer cell 2009, 16:91-02. CrossRef
    26. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, / et al.: Micro-RNA profiling in kidney and bladder cancers. / Urol Oncol 2007, 25:387-92. CrossRef
    27. Xu J, Wu C, Che X, Wang L, Yu D, Zhang T, Huang L, Li H, Tan W, Wang C, Lin D: Circulating MicroRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. / Mol Carcinog 50:136-42.
    28. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD: Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. / Nature 2008, 451:1125-129. CrossRef
    29. Vanpoucke G, Goossens S, De Craene B, Gilbert B, van Roy F, Berx G: GATA-4 and MEF2C transcription factors control the tissue-specific expression of the alphaT-catenin gene CTNNA3. / Nucleic Acids Res 2004, 32:4155-165. CrossRef
    30. Janssens B, Goossens S, Staes K, Gilbert B, van Hengel J, Colpaert C, Bruyneel E, Mareel M, van Roy F: alphaT-catenin: a novel tissue-specific beta-catenin-binding protein mediating strong cell-cell adhesion. / J Cell Sci 2001, 114:3177-188.
    31. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. / Rna 2008, 14:2348-360. CrossRef
    32. Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. / Gynecol Oncol 2008, 110:13-1. CrossRef
    33. Rosell R, Wei J, Taron M: Circulating MicroRNA Signatures of Tumor-Derived Exosomes for Early Diagnosis of Non-Small-Cell Lung Cancer. / Clin Lung Cancer 2009, 10:8-. CrossRef
    34. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, / et al.: Circulating microRNAs as stable blood-based markers for cancer detection. / Proc Natl Acad Sci USA 2008, 105:10513-0518. CrossRef
    35. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C: TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. / J Immunol 2002, 168:3235-241.
    36. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. / J Exp Med 1996, 183:1161-172. CrossRef
    37. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S: Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. / J Cell Biol 1999, 147:599-10. CrossRef
    38. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, Patel P, Selby PJ, Banks RE: Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. / Proteomics 2004, 4:4019-031. CrossRef
    39. O'Neill HC, Quah BJ: Exosomes secreted by bacterially infected macrophages are proinflammatory. / Sci Signal 2008, 1:pe8. CrossRef
    40. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. / J Cell Sci 2000,113(Pt 19):3365-374.
    41. Huber V, Filipazzi P, Iero M, Fais S, Rivoltini L: More insights into the immunosuppressive potential of tumor exosomes. / J Transl Med 2008, 6:63. CrossRef
    42. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, / et al.: Induction of myeloid-derived suppressor cells by tumor exosomes. / Int J Cancer 2009, 124:2621-633. CrossRef
    43. Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P: Inflammation-mediated promotion of invasion and metastasis. / Cancer Metastasis Rev 29:243-48.
    44. Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius A, Gabrielsson S, Radmark O: Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. / J Allergy Clin Immunol 126:1032-040. 1040 e1031-034
    45. Wang HW, Joyce JA: Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. / Cell cycle 2010, 9:4824-835. CrossRef
    46. Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE: IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. / BMC immunology 2002, 3:7. CrossRef
    47. Cao B, Guo Z, Zhu Y, Xu W: The potential role of PDGF, IGF-1, TGF-beta expression in idiopathic pulmonary fibrosis. / Chinese medical journal 2000, 113:776-82.
  • 作者单位:Mei Yang (1) (2)
    Jingqi Chen (1)
    Fang Su (3)
    Bin Yu (2)
    Fengxi Su (1)
    Ling Lin (1) (4)
    Yujie Liu (1)
    Jian-Dong Huang (2)
    Erwei Song (1)

    1. Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, PR China
    2. Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong SAR, China
    3. LIN BAI-XIN Research Center of Medicine, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, PR China
    4. Department of Rheumatology, The First Affiliated Hospital, Shantou University Medical College, Shantou city, Guangdong, PR China
  • ISSN:1476-4598
文摘
Background Tumor-associated macrophages (TAMs) are alternatively activated cells induced by interleukin-4 (IL-4)-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs) circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. Results We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO) that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. Conclusions We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700