用户名: 密码: 验证码:
Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple
详细信息    查看全文
  • 作者:Maryam Hassani ; Seyed Alireza Salami ; Jaber Nasiri ; Hamid Abdollahi…
  • 关键词:Pome fruit species ; Erwinia amylovora ; Fire blight ; PR genes ; ROS response
  • 刊名:Genetica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:144
  • 期:1
  • 页码:9-22
  • 全文大小:3,075 KB
  • 参考文献:Abdollahi H, Rugini E, Ruzzi M, Muleo R (2004) In vitro system for studying the interaction between Erwinia amylovora and genotypes of pear. Plant Cell, Tissue Organ Cult 79:203–212CrossRef
    Azad MK, Nasiri J, Abdollahi H (2013) Genetic diversity of selected iranian quinces using SSRs from apples and pears. Bioch genet 51:426–442CrossRef
    Baldo A, Norelli JL, Farrell RE, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol 10:1PubMedCentral CrossRef PubMed
    Bonasera JM, Kim JF, Beer SV (2006) PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol 6:23PubMedCentral CrossRef PubMed
    Bonn WG, van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire blight the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford
    Channuntapipat C, Sedgley M, Collins G (2001) Sequences of the cDNAs and genomic DNAs encoding the S1, S7, S8, and Sf alleles from almond, Prunus dulcis. Theor Appl Genet 103:1115–1122CrossRef
    Cornelis GR, van Gijsegem F (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774CrossRef PubMed
    Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRef
    Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCentral CrossRef PubMed
    Ghahremani Z, Abdollahi H (2010) Induction of systemic acquired resistance by salicylic acid against fire blight in apple and pear. In: XII international workshop on fire blight 896, pp 155–163
    Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420CrossRef PubMed
    Heyens K,  Valcke R (2006) Flourescence imaging of the infection pattern of apple leaves with erwinia amylovora. Acta hort 704:69–71CrossRef
    Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53:493–511CrossRef PubMed
    Jensen PJ, Makalowska I, Altman N, Fazio G, Praul C, Maximova SN, Crassweller RM, Travis JW, McNellis TW (2010) Rootstock-regulated gene expression patterns in apple tree scions. Tree Genet Genomes 6:57–72CrossRef
    Jensen PJ, Halbrendt N, Fazio G, Makalowska I, Altman N, Praul C, Maximova SN, Ngugi HK, Crassweller RM, Travis JW, McNellis TW (2012) Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genom 13:9CrossRef
    Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:251–275CrossRef
    Liu Z, Du L, Wan B (2005) Pathogenesis-related proteins in higher plants. Nat Prod Res Dev 17:229–234
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408CrossRef PubMed
    Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits TH, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494CrossRef PubMed
    Mayer M, Oberhuber C, Loncaric I, Heissenberger B, Keck M, Scheiner O, Hoffmann-Sommergruber K (2011) Fire blight (Erwinia amylovora) affects Mal d 1-related allergenicity in apple. Eur J Plant Pathol 131:1–7CrossRef
    McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465CrossRef PubMed
    Moradi A, Nasiri J, Abdollahi H, Almasi M (2012) Development and evaluation of a loop-mediated isothermal amplification assay for detection of Erwinia amylovora based on chromosomal DNA. Eur J Plant Pathol 133:609–620CrossRef
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
    Norelli JL, Farrell RE Jr, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME (2009) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genet Genomes 5:27–40CrossRef
    Pester D, Milčevičová R, Schaffer J, Wilhelm E, Blümel S (2012) Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees. PLoS ONE 7:e32583PubMedCentral CrossRef PubMed
    Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224CrossRef PubMed
    Sarowar S, Zhao Y, Soria-Guerra RE, Ali S, Zheng D, Wang D, Korban SS (2011) Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. J Exp Bot 62:4851–4861PubMedCentral CrossRef PubMed
    Sklodowska M, Gajewska E, Kuzniak E, Wielanek M, Mikicinski A, Sobiczewski P (2011) Antioxidant profile and polyphenol oxidase activities in apple leaves after Erwinia amylovora infection and pretreatment with a benzothiadiazole-type resistance inducer (BTH). J Phytopathol 159:495–504CrossRef
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentral CrossRef PubMed
    Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J 11:1187–1194CrossRef
    Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378PubMedCentral CrossRef PubMed
    Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765CrossRef
    Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR1 type proteins. Physiol Mol Plant Pathol 55:85–97CrossRef
    Venisse JS, Gullner G, Brisset MN (2001) Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol 125:2164–2172PubMedCentral CrossRef PubMed
    Venisse JS, Malnoy M, Faize M, Paulin JP, Brisset MN (2002) Modulation of defense responses of Malus (spp. during compatible and incompatible interactions with Erwinia amylovora. Mol Plant Microbe Interact 15:1204–1212CrossRef PubMed
    Vrancken K, Schoofs H, Deckers T, Valcke R (2012) Real time qPCR expression analysis of some stress related genes in leaf tissue of Pyrus communis cv. Conference after infection with Erwinia amylovora. Trees Struct Funct 26:67–73CrossRef
    Vrancken K, Holtappels M, Schoofs H, Deckers T, Valcke R (2013) Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiology 159:823–832CrossRef PubMed
    Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094PubMedCentral CrossRef PubMed
  • 作者单位:Maryam Hassani (1)
    Seyed Alireza Salami (2)
    Jaber Nasiri (3)
    Hamid Abdollahi (4)
    Zahra Ghahremani (1)

    1. Department of Biotechnology, Faculty of Agriculture and Natural Resources, Azad University (Science and Research Branch), P.O. Box 4933, Tehran, 14155, Iran
    2. Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj, 31587, Iran
    3. Department of Agronomy and Plant Breeding, Division of Molecular Plant Genetics, College of Agricultural & Natural Resources, University of Tehran, Karaj, Tehran, Iran
    4. Department of Horticulture Research, Seed and Plant Improvement Institute, P.O. Box 4119, Karaj, 31585, Iran
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Animal Genetics and Genomics
    Plant Genetics and Genomics
    Human Genetics
    Microbial Genetics and Genomics
  • 出版者:Springer Netherlands
  • ISSN:1573-6857
文摘
Attempts were made to identify eight pathogenesis related (PR) genes (i.e., PR-1a, PR3-ch1, PR3-Ch2, PR3-Ch3, PR3-Ch4, PR3-Ch5, PR-5 and PR-8) from 27 genotypes of apple, quince and pear, which are induced in response to inoculation with the pathogen Erwinia amylovora, the causal agent of fire blight. Totally, 32 PR genes of different families were obtained, excepting PR3-Ch2 (amplified only in apple) and PR3-Ch4 (amplified only in apple and pear), the others were successfully amplified in all the genotypes of apple, quince and pear. Evolutionary, the genes of each family exhibited significant homology with each other, as the corresponded phylogenetic neighbor-joining-based dendrograms were taken into consideration. Meanwhile, according to the expression assay, it was deduced that the pathogen activity can significantly affect the expression levels of some selected PR genes of PR3-Ch2, PR3-Ch4, PR3-Ch5 and particularly Cat I in both resistant (MM-111) and semi-susceptible (MM-106) apple rootstocks. Lastly, it was concluded that the pathogen E. amylovora is able to stimulate ROS response, particularly using generation of hydrogen peroxide (H2O2) in both aforementioned apple rootstock. Keywords Pome fruit species Erwinia amylovora Fire blight PR genes ROS response

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700