用户名: 密码: 验证码:
In situ reactive compatibilization of PP/ABS blends via Friedel-Crafts alkylation reaction
详细信息    查看全文
  • 作者:Parvaneh Eskandari ; Majid Mehrabi Mazidi…
  • 关键词:polypropylene ; rubber toughening ; in situ compatibilization ; friedel ; crafts alkylation ; mechanical properties
  • 刊名:Macromolecular Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:24
  • 期:1
  • 页码:14-24
  • 全文大小:1,142 KB
  • 参考文献:(1).L. Zhu, X. Xu, and J. Sheng, J. Polym. Res., 18, 11 (2011).
    (2).S. Hammani, N. Moulai-Mostefa, L. Benyahia, and J. F. Tassin, J. Polym. Res., 19, 11 (2012).CrossRef
    (3).A. G. Gibson, in Polypropylene Structure, Blends and Composites, J. Karger-Kocsis, Ed., Springer Science & Business, London, 1995, Vol. 1, pp 71–113.CrossRef
    (4).C. B. Bucknall, Macromol. Symp., 38, 11 (1990).
    (5).A. Van der Wal, J. J. Mulder, H. A. Thijs, and R. J. Gaymans, Polymer, 39, 11 (1998).CrossRef
    (6).C. B. Bucknall, in Toughened Plastics, Springer Science & Business, London, 1997, pp 182–211.
    (7).A. Van der Wal, A. J. J. Verheul, and R. J. Gaymans, Polymer, 40, 11 (1999).
    (8).A. Bassani and L. A. Pessan, J. Appl. Polym. Sci., 88, 11 (2003).CrossRef
    (9).A. K. Gupta and S. N. Purwar, J. Appl. Polym. Sci., 31, 11 (1986).
    (10).W. Jiang, S. C. Tjong, and R. K. Y. Li, Polymer, 41, 11 (2000).
    (11).Y. Chen and H. Li, Polym. Eng. Sci., 44, 11 (2004).
    (12).Z. B. Ahmad, M. F. Ashby, and P. W. R. Beaumont, Scripta Metall., 20, 11 (1986).CrossRef
    (13).Y. Yokoyama and T. Ricco, Polymer, 39, 11 (1998).CrossRef
    (14).M. M. Mazidi, M. K. R. Aghjeh, and F. Abbasi, J. Polym. Res., 19, 11 (2012).CrossRef
    (15).A. Van der Wal, R. Nijhof, and R. J. Gaymans, Polymer, 40, 11 (1999).
    (16).L. A. Utracki and B. D. Favis, in Handbook of Polymer Science and Technology, N. P. Cheremisinoff, Ed., Marcel Dekker, New York, 1989, Vol. 4, pp. 121–201.
    (17).L. A. Utracki, Can. J. Chem. Eng., 80, 11 (2002).CrossRef
    (18).M. M. Mazidi, M. K. R. Aghjeh, and F. Abbasi, J. Mater. Sci., 47, 11 (2012).
    (19).M. M. Mazidi, M. K. R. Aghjeh, and F. Abbasi, J. Appl. Polym. Sci., 131, (2014).
    (20).A. C. Patel, R. B. Brahmbhatt, B. Sarawade, and S. Devi, J. Appl. Polym. Sci., 81, 11 (2001).CrossRef
    (21).A. C. Patel, R. B. Brahmbhatt, and S. Devi, J. Appl. Polym. Sci., 88, 11 (2003).CrossRef
    (22).C. K. Kum, Y. T. Sung, Y. S. Kim, H. G. Lee, W. N. Kim, H. S. Lee, and H. G. Yoon, Macromol. Res., 15, 11 (2007).CrossRef
    (23).H. G. Lee, Y. T. Sung, Y. K. Lee, W. N. Kim, H. G. Yoon, and H. S. Lee, Macromol. Res., 17, 11 (2009).
    (24).T. Y. Kim, D. M. Kim, W. J. Kim, T. H. Lee, and K. S. Suh, J. Polym. Sci., Part B: Polym. Phys., 42, 11 (2004).
    (25).E. V. Hemelrijck, P. V. Puyvelde, S. Velankar, C. W. Macosko, and P. Moldenaers, J. Rheol., 48, 11 (2004).
    (26).E. V. Hemelrijck, P. V. Puyvelde, S. Velankar, C. W. Macosko, and P. Moldenaers, J. Rheol., 49, 11 (2005).
    (27).M. F. Diaz, S. E. Barbosa, and N. J. Capiati, J. Polym. Sci., Part B: Polym. Phys., 42, 11 (2004).CrossRef
    (28).R. T. Morrison and R. N. Boyd, in Organic Chemistry, Allynand Bacon, New York, 1973, pp 337–371.
    (29).B. Reinhard, in Advanced organic chemistry, Harcourt/Academic Press, San Diego, 2002, pp 169–212.
    (30).W. L. Carrick, J. Polym. Sci., Part A-1: Polym. Chem., 8, 11 (1970).
    (31).W. Barentsen and D. Heikens, Polymer, 14, 11 (1973).CrossRef
    (32).D. Heikens and W. Barentsen, Polymer, 18, 11 (1977).CrossRef
    (33).Y. J. Sun and W. E. Baker, J. Appl. Polym. Sci., 65, 11 (1997).
    (34).Y. J. Sun, R. J. G. Willemse, T. M. Liu, and W. E. Baker, Polymer, 39, 11 (1998).
    (35).Y. Gao, H. Huang, Z. Yao, D. Shi, Z. Ke, and J. Yin, J. Polym. Sci., Part B: Polym. Phys., 41, 11 (2003).CrossRef
    (36).M. F. Diaz, S. E. Barbosa, and N. J. Capiati, Polymer, 46, 11 (2005).CrossRef
    (37).M. F. Diaz, S. E. Barbosa, and N. J. Capiati, J. Appl. Polym. Sci., 114, 11 (2009).CrossRef
    (38).Z. Guo, L. Tong, and Z. Fang, Polym. Int., 54, 11 (2005).CrossRef
    (39).R. Kurbanova, R. Mirzaoglu, G. Akovali, Z. M. Rzaev, I. Karatas, and A. Okudan, J. Appl. Polym. Sci., 59, 11 (1996).CrossRef
    (40).D. Graebling, R. Muller, and J. F. Palierne, Macromolecules, 26, 11 (1993).CrossRef
    (41).D. Graebling, A. Benkira, Y. Gallot, and R. Muller, Eur. Polym. J., 30, 11 (1994).CrossRef
    (42).Y. Germain, B. Ernst, O. Genelot, and L. Dhamani, J. Rheol., 38, 11 (1994).CrossRef
    (43).D. O. Hummel, in Atlas of Polymer and Plastics Analysis, Vol. 1, Polymers: Structure and Spectra, 1988.
    (44).S. Wu, Polymer Interface and Adhesion, Marcel Dekker, New York, 1982.
  • 作者单位:Parvaneh Eskandari (1) (2)
    Majid Mehrabi Mazidi (1) (2)
    Mir Karim Razavi Aghjeh (1) (2)

    1. Institute of Polymeric Materials, Sahand University of Technology, P.C:51335-1996, Tabriz, Iran
    2. Faculty of Polymer Engineering, Sahand University of Technology, P.C:51335-1996, Tabriz, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Polymer Sciences
    Characterization and Evaluation of Materials
    Soft and Granular Matter, Complex Fluids and Microfluidics
    Nanochemistry
    Nanotec
  • 出版者:The Polymer Society of Korea, co-published with Springer
  • ISSN:2092-7673
文摘
Friedel-Crafts alkylation reaction was employed to reactively compatibilize the polypropylene (PP)/acrylonitrile- butadiene-styrene (ABS) blends, using AlCl3 as a catalyst. Rheology, morphology and mechanical properties of the reactive compatibilized blends along with the reference un-compatibilized samples were studied. Scanning electron microscopy (SEM) observations showed that blends containing catalyst exhibited an improvement in the dispersion state of ABS rubber particles. The results of mechanical tests revealed that reactive compatibilization partly increased the ultimate strength and Izod impact strength of the blends with a loss in tensile ductility. The change in these properties was explained in terms of different chemical reactions including grafting and degradation. Occurrence of these reactions was confirmed using different viscoelastic properties of the compatibilized blend samples. A great improvement in ultimate strength and impact toughness to levels much higher than those of neat PP was achieved in reactively compatibilized PP/ABS blends containing PP-g-MA. These findings were justified by morphological and rheological analyses. The formation of graft copolymer was also confirmed using Fourier transform infrared spectroscopy (FTIR) measurements. The results of impact toughness data were in agreement with the interfacial tension values measured via contact angle analysis. The deformation behavior of the different compatibilized samples was rationalized via fractographic study of the impact-fractured surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700