用户名: 密码: 验证码:
The role of Metal-Matrix Composite development During Friction Stir Welding of Aluminum to Brass in Weld Characteristics
详细信息    查看全文
  • 作者:H. R. Zareie Rajani (1) hamid.r.zareie@ut.ac.ir r>A. Esmaeili (2) r>M. Mohammadi (3) r>M. Sharbati (4) r>M. K. B. Givi (2)
  • 关键词:aluminum – ; corrosion testing – ; metal matrix composites – ; welding
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:21
  • 期:11
  • 页码:2429-2437
  • 全文大小:1.6 MB
  • 参考文献:1. M.D. Fuller, S. Swaminathan, A.P. Zhilayev, and T.R. McNelley, Microstructural Transformations and Mechanical Properties of Cast NiAl Bronze: Effects of Fusion Welding and Friction Stir Processing, Mater. Sci. Eng. A, 2007, 463, p 128–137 r>2. H.N.B. Schmidt, T.L. Dickerson, and J.H. Hattel, Material Flow in Butt Friction Stir Welds in AA2024-T3, Acta Mater., 2006, 54, p 1199–1209 r>3. Z.W. Chen, T. Pasang, and Y. Qi, Shear Flow and Formation of Nugget Zone During Friction Stir Welding of Aluminum Alloy 5083-O, Mater. Sci. Eng. A, 2008, 474, p 312–316 r>4. Y. Yan, D. Zhang, C. Qiu, and W. Zhang, Dissimilar Friction Stir Welding Between 5052 Aluminum Alloy and AZ31 Magnesium Alloy, Trans. Nonferrous Met. Soc., 2010, 20, p s619–s623 r>5. K.N. Krishnan, On the Formation of Onion Rings in Friction Stir Welds, Mater. Sci. Eng. A, 2002, 327, p 246–251 r>6. A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, and A. Echeverria, Material Flow and Mechanical Behaviour of Dissimilar AA2024-T3 and AA7075-T6 Aluminium Alloys Friction Stir Welds, Mater. Des., 2011, 32, p 2021–2027 r>7. K. Kumar and S. Kailas, The Role of Friction Stir Welding Tool on Material Flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485, p 367–374 r>8. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78 r>9. A. Esmaeili, M.K. Besharati Givi, and H.R. Zareie Rajani, A Metallurgical and Mechanical Study on Dissimilar Friction Stir Welding of Aluminum 1050 to Brass (CuZn30), Mater. Sci. Eng. A, 2011, 528, p 7093–7102 r>10. A. Esmaeili, H.R. Zareie Rajani, M. Sharbati, M.K. Besharati Givi, and M. Shamanian, The Role of Rotation Speed on Intermetallic Compounds Formation and Mechanical Behavior of Friction Stir Welded Brass/Aluminum 1050 Couple, J. Intermet., 2011, 19, p 1711–1719 r>11. M. Jariyaboon, A.J. Davenport, R. Ambat, B.J. Connolly, S.W. Williams, and D.A. Price, The Effect of Welding Parameters on the Corrosion Behaviour of Friction Stir Welded AA2024-T351, Corros. Sci., 2007, 49, p 877–909 r>12. C.S. Paglia and R.G. Buchheit, A Look in the Corrosion of Aluminum Alloy Friction Stir Welds, Scripta Mater., 2008, 58, p 383–387 r>13. R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, and A.J. Davenport, Microstructure, Mechanical Properties, and Corrosion of Friction Stir Welded Al 5456, Mater. Sci. Eng. A, 2009, 519, p 1–8 r>14. J. Kang, R. Fu, G. Luan, C. Dong, and M. He, In-Situ Investigation on the Pitting Corrosion Behavior of Friction Stir Welded Joint of AA2024-T3 Aluminium Alloy, Corros. Sci., 2010, 52, p 620–626 r>15. D.A. Wadeson, X. Zhou, G.E. Thompson, P. Skeldon, L. Djapic Oosterkamp, and G. Scamans, Corrosion Behaviour of Friction Stir Welded AA7108 T79 Aluminium Alloy, Corros. Sci., 2006, 48, p 887–897 r>16. C. Liu, D.L. Chen, S. Bhole, X. Cao, and M. Jahazi, Polishing-Assisted Galvanic Corrosion in the Dissimilar Friction Stir Welded Joint of AZ31 Magnesium Alloy to 2024 Aluminum Alloy, Mater. Charact., 2009, 60, p 370–376 r>17. Standard ASTM G5 1994 r>18. G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, Boston, 1986 r>19. J. Cai, S. Shekhar, J. Wang, and M. Ravi Shankar, Nanotwinned Microstructures from Low SFE Brass by HRSPD, Scripta Mater., 2009, 60, p 599–602 r>20. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986 r>21. R. Baboian, Corrosion Tests and Standards, Application and Interpretation, 2nd ed., ASTM International, West Conshohocken, 2005 r>22. D. Lewis, D.O. Northwood, and C.E. Pearce, A Study of the Effects of Microstrain on the Electrode Potential and the Anodic Dissolution of Cu, Corros. Sci., 1969, 9, p 779–787 r>23. S. Tiwari, R. Balasubramaniam, and M. Gupta, Corrosion Behavior of SiC Reinforced Magnesium Composites, Corros. Sci., 2007, 49, p 711–725 r>24. N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai, and J. Wei, Effect of Carbon Nanotubes on Corrosion of Mg-CNT Composites, Corros. Sci., 2010, 52, p 1551–1553
  • 作者单位:1. School of Engineering, The University of British Columbia, EME 3223, 3333 University Way, Kelowna, BC V1V 1V7, Canada2. School of Mechanical Engineering, University College of Engineering, University of Tehran, Tehran, Iran3. School of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran4. School of Materials Science and Engineering, University College of Engineering, University of Tehran, Tehran, Iran
  • ISSN:1544-1024
文摘
The present research aims to investigate the development of brass reinforced aluminum composites during dissimilar friction stir welding of brass and aluminum. Moreover, to probe the effect of such a metal matrix composite on its bed, the cross-sectional properties of joint area are studied in two aspects of corrosion behavior and hardness distribution. Microstructural investigations through optical and electron microscopy show development of lamellar composites within the top site of the stir zone and aluminum surface. The measured iso-hardness contours indicate that evolved composite structures increase the cross-sectional hardness of aluminum locally. Also, the electrochemical assessment of joint area suggests that Al/Br composite structure plays an accelerative role in deterioration of cross-sectional corrosion resistance of aluminum through obstructing passivation and forming microgalvanic cells, where cathodic brass reinforcements intensify the corrosion of anodic aluminum matrix.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700