用户名: 密码: 验证码:
Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution
详细信息    查看全文
  • 作者:Amol V. Shivange ; Danilo Roccatano…
  • 关键词:Directed evolution ; KeySIDE ; Molecular dynamics simulations ; Phytase ; Thermostability ; Protein engineering
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:1
  • 页码:227-242
  • 全文大小:2,575 KB
  • 参考文献:Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17(4):412–425PubMed CrossRef
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Intermolecular Forces. D Reidel Publishing Company, The Netherlands, pp 331–342CrossRef
    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRef
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1-3):43–56CrossRef
    Billington DC (1993) The Inositol phosphates: chemical synthesis and biological significance. Weinheim, VCH Verlagsgesellschaft
    Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): An enzyme-free and sequence-independent cloning method. Anal Biochem 406(2):141–146PubMed CrossRef
    Blattmann BO, Darzins A, Davis JM, Encell LP, Morrison TB, Mrachko GT, Schellenberger V (2011) Mutant E. coli appa phytase enzymes and natural variants thereof, nucleic acids encoding such phytase enzymes, vectors and host cells incorporating same and methods of making and using same. Patent US7968342 B2, USA
    Bohm K, Herter T, Muller JJ, Borriss R, Heinemann U (2010) Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. FEBS J 277(5):1284–1296PubMed CrossRef
    Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ (Sci) 9(3):165–191CrossRef
    Castrignano T, De Meo PD, Cozzetto D, Talamo IG, Tramontano A (2006) The PMDB Protein Model Database. Nucleic Acids Res 34(Database issue):D306–D309. doi:10.​1093/​nar/​gkj105 PubMed PubMedCentral CrossRef
    Cavazza C (2000) Carnitine and inositol phosphate-containing composition useful as dietary supplement or drug. WO Patent WO 0064426 A2, 2000
    Copeland RA (2000) Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd edn. Wiley-VCH, New YorkCrossRef
    Cowieson A, Cooper R (2010) Introduction to the event and overview of the phytase market. In: International Phytase Summit. International Phytase Summit, Washington, D.C. USA
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N [center-dot] log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRef
    Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren W, Mark A (1999) Peptide Folding: When Simulation Meets Experiment. Angew Chem Int Ed Engl 38(1-2):236–240CrossRef
    Fei B, Xu H, Cao Y, Ma S, Guo H, Song T, Qiao D, Cao Y (2013) A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J Ind Microbiol Biotechnol 40(5):457–464. doi:10.​1007/​s10295-013-1260-z PubMed CrossRef
    Garrett JB, Kretz KA, O’Donoghue E, Kerovuo J, Kim W, Barton NR, Hazlewood GP, Short JM, Robertson DE, Gray KA (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70(5):3041–3046PubMed PubMedCentral CrossRef
    Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723PubMed CrossRef
    Harland BF, Oberleas D (1999) Phytase in animal nutrition and waste management. BASF Reference Manual: 45:237–240
    Hutchison CA, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253(18):6551–6560PubMed
    Kim MS, Lei XG (2008) Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol 79(1):69–75PubMed CrossRef
    Kim MS, Weaver JD, Lei XG (2008) Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol 79(5):751–758PubMed CrossRef
    Kostrewa D, Wyss M, D’Arcy A, van Loon AP (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2. 4 A resolution. J Mol Biol 288(5):965–974. doi:10.​1006/​jmbi.​1999.​2736 PubMed CrossRef
    Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191PubMed CrossRef
    Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) {PROCHECK}: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291, citeulike-article-id:1720734 CrossRef
    Lei X (2013) Phytases with improved thermal stability. Patent US8540984 B2, USA
    Lim D, Golovan S, Forsberg CW, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7(2):108–113. doi:10.​1038/​72371 PubMed CrossRef
    Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317
    Lindqvist Y, Schneider G, Vihko P (1993) Three-dimensional structure of rat acid phosphatase in complex with L(+)-tartrate. J Biol Chem 268(28):20744–20746PubMed
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85. doi:10.​1038/​356083a0 PubMed CrossRef
    Miasnikov A, Kumar V, Kensch O, Pellangahr K, Leuthner B, Kettling U, Koltermann A (2012) Mutant Citrobacter freundii phytase polypeptide. Patent US8143045 B2, USA
    Miyamoto S, Kollman P (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962CrossRef
    Noorbatcha IA, Sultan AM, Salleh HM, Amid A (2013) Understanding thermostability factors of Aspergillus niger PhyA phytase: a molecular dynamics study. Protein J 32(4):309–316. doi:10.​1007/​s10930-013-9489-y PubMed CrossRef
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMed CrossRef
    Reetz MT, Carballeira JD, Vogel A (2006a) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl 45(46):7745–7751. doi:10.​1002/​anie.​200602795 PubMed CrossRef
    Reetz MT, Wang LW, Bocola M (2006b) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45(8):1236–1241. doi:10.​1002/​anie.​200502746 PubMed CrossRef
    Ryckaert J, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRef
    Sali A (1996) Comparative protein modeling by satisfaction of spatial restraints. Immunotechnology 2:279–280
    Salverda ML, Dellus E, Gorter FA, Debets AJ, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JA (2011) Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7(3):e1001321. doi:10.​1371/​journal.​pgen.​1001321 PubMed PubMedCentral CrossRef
    Sanchez-Romero I, Ariza A, Wilson KS, Skjot M, Vind J, De Maria L, Skov LK, Sanchez-Ruiz JM (2013) Mechanism of protein kinetic stabilization by engineered disulfide crosslinks. PLoS One 8(7):e70013. doi:10.​1371/​journal.​pone.​0070013 PubMed PubMedCentral CrossRef
    Sandberg A, Brune M, Carlsson N, Hallberg L, Skoglund E, Rossander-Hulthen L (1999) Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr 70(2):240–246PubMed
    Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS Biomolecular Simulation Program Package. J Phys Chem A 103(19):3596–3607CrossRef
    Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World Poultry Sci J 54(01):27–47CrossRef
    Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U (2009) Advances in generating functional diversity for directed protein evolution. Curr Opin Chem Biol 13(1):19–25PubMed CrossRef
    Shivange AV, Schwaneberg U, Roccatano D (2010) Conformational dynamics of active site loop in Escherichia coli phytase. Biopolymers 93(11):994–1002PubMed CrossRef
    Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95(2):405–418. doi:10.​1007/​s00253-011-3756-7 PubMed CrossRef
    Shivange AV, Dennig A, Schwaneberg U (2014) Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J Biotechnol 170:68–72. doi:10.​1016/​j.​jbiotec.​2013.​11.​014 PubMed CrossRef
    Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234PubMed CrossRef
    Tian YS, Peng RH, Xu J, Zhao W, Gao F, Fu XY, Xiong AS, Yao QH (2011) Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity. Mol Biol Rep 38(2):977–982. doi:10.​1007/​s11033-010-0192-1
    Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13(1):3–9. doi:10.​1016/​j.​cbpa.​2009.​01.​017 PubMed PubMedCentral CrossRef
    Tung ET, Ma HW, Cheng C, Lim BL, Wong KB (2008) Stabilization of beta-propeller phytase by introducing Xaa-->Pro and Gly-->Ala substitutions at consensus positions. Protein Pept Lett 15(3):297–299PubMed CrossRef
    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718CrossRef
    Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643PubMed CrossRef
    Wong TS, Roccatano D, Loakes D, Tee KL, Schenk A, Hauer B, Schwaneberg U (2008) Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): a random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnol J 3(1):74–82. doi:10.​1002/​biot.​200700193 PubMed CrossRef
    Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, Kusznir E, Wahl G, Muller F, Lahm HW, Vogel K, van Loon AP (1999) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65(2):359–366PubMed PubMedCentral
    Zhang W, Mullaney EJ, Lei XG (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 73(9):3069–3076. doi:10.​1128/​AEM.​02970-06 PubMed PubMedCentral CrossRef
    Zhao Q, Liu H, Zhang Y (2010) Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng 110(6):638–645. doi:10.​1016/​j.​jbiosc.​2010.​08.​003 PubMed CrossRef
    Zhu W, Qiao D, Huang M, Yang G, Xu H, Cao Y (2010) Modifying thermostability of appA from Escherichia coli. Curr Microbiol 61(4):267–273. doi:10.​1007/​s00284-010-9606-5 PubMed CrossRef
  • 作者单位:Amol V. Shivange (1) (2) (3)
    Danilo Roccatano (2)
    Ulrich Schwaneberg (1) (2)

    1. Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
    2. School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
    3. Present Address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The “best” combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure–function relationships of enzymes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700