用户名: 密码: 验证码:
Cell performance distribution in a low-temperature proton exchange membrane fuel cell stack during propene contamination
详细信息    查看全文
  • 作者:Jean St-Pierre ; Maheboob B. V. Virji
  • 关键词:Proton exchange membrane fuel cell ; Fuel cell stack ; Voltage distribution ; Air stream contaminant
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:46
  • 期:2
  • 页码:169-181
  • 全文大小:2,159 KB
  • 参考文献:1.Curtin S, Gangi J (2014) 2013 fuel cell technologies market report. United States Department of Energy, Energy Efficiency and Renewable Energy
    2.St-Pierre J (2009) Air impurities. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 289–321CrossRef
    3.Kennedy DM, Cahela DR, Zhu WH, Westrom KC, Nelms RM, Tatarchuk BJ (2007) Fuel cell cathode air filters: methodologies for design and optimization. J Power Sour 168:391–399. doi:10.​1016/​j.​jpowsour.​2007.​03.​020 CrossRef
    4.St-Pierre J, Angelo M, Bethune K, Ge J, Higgins S, Reshetenko T, Virji M, Zhai Y (2014) PEMFC contamination—fundamentals and outlook. Electrochem Soc Trans 61(23):1–14. doi:10.​1149/​06123.​0001ecst
    5.St-Pierre J (2009) Overview performance and operational conditions. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 2. Elsevier, Amsterdam, pp 901–911CrossRef
    6.Chang PAC, St-Pierre J, Stumper J, Wetton B (2006) Flow distribution in proton exchange membrane fuel cell stacks. J Power Sour 162:340–355. doi:10.​1016/​j.​jpowsour.​2006.​06.​081 CrossRef
    7.Promislow K, Wetton B (2005) A simple, mathematical model of thermal coupling in fuel cell stacks. J Power Sour 150:129–135. doi:10.​1016/​j.​jpowsour.​2005.​02.​032 CrossRef
    8.Chang P, Kim G-S, Promislow K, Wetton B (2007) Reduced dimensional computational models of polymer electrolyte membrane fuel cell stacks. J Comput Phys 223:797–821. doi:10.​1016/​j.​jcp.​2006.​10.​011 CrossRef
    9.Pei H, Liu Z, Zhang H, Yu Y, Tu Z, Wan Z, Liu W (2013) In situ measurement of temperature distribution in proton exchange membrane fuel cell I a hydrogen-air stack. J Power Sources 227:72–79. doi:10.​1016/​j.​jpowsour.​2012.​11.​027 CrossRef
    10.St-Pierre J, Zhai Y, Angelo M (2012) Quantitative ranking criteria for PEMFC contaminants. Int J Hydrog Energy 37:6784–6789. doi:10.​1016/​j.​ijhydene.​2012.​01.​029 CrossRef
    11.Reshetenko TV, Bethune K, Rocheleau R (2012) Spatial proton exchange membrane fuel cell performance under carbon monoxide poisoning at a low concentration using a segmented cell system. J Power Sour 218:412–423. doi:10.​1016/​j.​jpowsour.​2012.​07.​015 CrossRef
    12.Büchi FN (2009) Heterogeneous cell ageing in polymer electrolyte fuel cell stacks. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 431–439CrossRef
    13.Jung JH, Kim SH, Hur SH, Joo SH, Choi WM, Kim J (2013) Polymer electrolyte membrane fuel cell performance degradation by coolant leakage and recovery. J Power Sour 226:320–328. doi:10.​1016/​j.​jpowsour2012.​10.​090 CrossRef
    14.St-Pierre J, Zhai Y, Angelo MS (2014) Effect of selected airborne contaminants on PEMFC performance. J Electrochem Soc 161:F280–F290. doi:10.​1149/​2.​057403jes CrossRef
    15.St-Pierre J, Ge J, Zhai Y, Reshetenko TV, Angelo M (2013) PEMFC cathode contamination mechanisms for several VOCs—acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene and propene. Electrochem Soc Trans 58(1):519–528. doi:10.​1149/​05801.​0519ecst
    16.St-Pierre J, Angelo MS, Zhai Y (2011) Focusing research by developing performance related selection criteria for PEMFC contaminants. Electrochem Soc Trans 41(1):279–286. doi:10.​1149/​1.​3635561
    17.Zhai Y, St-Pierre J, Angelo M (2012) The impact of operating conditions on the performance effect of selected airborne PEMFC contaminants. Electrochem Soc Trans 50(2):635–647. doi:10.​1149/​05002.​0635ecst
    18.Ge J, St-Pierre J, Zhai Y (2014) PEMFC cathode catalyst contamination evaluation with a RRDE—propene and naphthalene. Electrochim Acta 138:437–446. doi:10.​1016/​j.​electacta.​2014.​06.​147 CrossRef
    19.Osenar P, Vitella T, Lauder N, Avis S, Ferreira D, Rezac R (2011) Insert-molded, externally-manifolded, sealed membrane based electrochemical cell stacks. United States Patent 7,914,947
    20.Randolf G, Moore RM (2005) Test system design for hardware-in-loop evaluation of PEM fuel cells and auxiliaries. J Power Sour 158:392–396. doi:10.​1016/​j.​jpowsour.​2005.​09.​058 CrossRef
    21.Moore RM, Hauer KH, Randolf G, Virji M (2006) Fuel cell hardware-in-loop. J Power Sour 162:302–308. doi:10.​1016/​j.​jpowsour.​2006.​06.​066 CrossRef
    22.St-Pierre J, Wetton B, Zhai Y, Ge J (2014) Liquid water scavenging of PEMFC contaminants. J Electrochem Soc 161:E3357–E3364. doi:10.​1149/​2.​0291409jes CrossRef
    23.Costamagna P, Arato E, Achenbach E, Reus U (1994) Fluid dynamic study of fuel-cell devices—simulation and experimental validation. J Power Sour 52:243–249. doi:10.​1016/​0378-7753(94)02014-0 CrossRef
    24.Na Y, Suh J, Song I, Choi K-H, Choi H, Kim KB, Park J-Y (2011) Stable operation of air-blowing direct methanol fuel cell stacks through uniform oxidant supply by varying fluid flow fixtures and developing the flow sensor. Int J Hydrog Energy 36:9205–9215. doi:10.​1016/​j.​ijhydene.​2011.​04.​183 CrossRef
    25.Wasterlain S, Candusso D, Harel F, Hissel D, François X (2011) Development of new test instruments and protocols for the diagnostic of fuel cell stacks. J Power Sour 196:5325–5333. doi:10.​1016/​j.​jpowsour.​2010.​08.​029 CrossRef
    26.Zhai Y, Bethune K, Bender G, Rocheleau R (2012) Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy. J Electrochem Soc 159:B524–B530. doi:10.​1149/​2.​067205jes CrossRef
    27.Cimenti M, Tam M, Stumper J (2009) High frequency artifacts in electrochemical impedance spectroscopy measurements on PEM fuel cells. Electrochem Solid-State Lett 12:B131–B134. doi:10.​1149/​1.​3162829 CrossRef
    28.Seland F, Tunold R, Harrington DA (2006) Impedance study of methanol oxidation on platinum electrodes. Electrochim Acta 51:3827–3840. doi:10.​1016/​j.​electacta.​2005.​10.​050 CrossRef
    29.Córdoba-Torres P, Keddam M, Nogueira RP (2009) On the intrinsic electrochemical nature of the inductance in EIS—a Monte Carlo simulation of the two-consecutive steps mechanism: the rough 3D case and the surface relaxation effect. Electrochim Acta 54:6779–6787. doi:10.​1016/​j.​electacta.​2009.​06.​084 CrossRef
    30.Ghosh S, Raj CR (2010) Facile in situ synthesis of multiwall carbon nanotube supported flowerlike Pt nanostructures: an efficient electrocatalyst for fuel cell application. J Phys Chem C 114:10843–10849. doi:10.​1021/​jp100551e CrossRef
    31.O’Rourke J, Arcak M, Ramani M (2008) Estimating air flow rates in a fuel cell system using electrochemical impedance. In: ASME 2008 dynamic systems and control conference, paper DSCC2008-2172. ASME, New York, pp 497–503
    32.Strano MS, Foley HC (2001) Synthesis and characterization of catalytic nanoporous carbon membranes. AIChE J 47:66–78. doi:10.​1002/​aic.​690470110 CrossRef
    33.Cruz FJAL, Esteves IAAC, Mota JPB (2010) Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: Langmuirian analysis and molecular simulations. Colloids Surf A 357:43–52. doi:10.​1016/​j.​colsurfa.​2009.​09.​002 CrossRef
    34.Ye P, Fang Z, Su B, Xing H, Yang Y, Su Y, Ren Q (2010) Adsorption of propylene and ethylene on 15 activated carbons. J Chem Eng Data 55:5669–5672. doi:10.​1021/​je100601n CrossRef
    35.Zaera F, Chrysostomou D (2000) Propylene on Pt(111) I. Characterization of surface species by infra-red spectroscopy. Surf Sci 457:71–88. doi:10.​1016/​S0039-6028(00)00336-8 CrossRef
    36.Janin E, Ringler S, Weissenrieder J, Åkermark T, Karlsson UO, Göthelid M, Nordlund D, Ogasawara H (2001) Adsorption and bonding of propene and 2-butenal on Pt(111). Surf Sci 482–485:83–89. doi:10.​1016/​S0039-6028(00)00999-7 CrossRef
    37.Valcárcel A, Ricart JM, Clotet A, Markovits A, Minot C, Illas F (2002) Theoretical study of the structure of propene adsorbed on Pt(111). Surf Sci 519:250–258. doi:10.​1016/​S0039-6028(02)02220-3 CrossRef
    38.Perger T, Kovács T, Turányi T, Treviño C (2005) Determination of the adsorption and desorption parameters for ethene and propene from measurements of the heterogeneous ignition temperature. Combust Flame 142:107–116. doi:10.​1016/​j.​combustflame.​2005.​03.​001 CrossRef
    39.Nykänen L, Honkala K (2011) Density functional theory study on propane and propene adsorption on Pt(111) and PtSn alloy surfaces. J Phys Chem C 115:9578–9586. doi:10.​1021/​jp1121799 CrossRef
    40.Garsany Y, Baturina OA, Swider-Lyons KE (2007) Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts. J Electrochem Soc 154:B670–B675. doi:10.​1149/​1.​2736648 CrossRef
    41.Elezović NR, Gajić-Krstajić L, Radmilović V, Vračar L, Krstajić NV (2009) Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. Electrochim Acta 54:1375–1382. doi:10.​1016/​j.​electacta.​2008.​08.​067 CrossRef
    42.Stickney JL, Soriaga MP, Hubbard AT, Anderson SE (1981) A survey of factors influencing the stability of organic functional-groups attached to platinum-electrodes. J Electroanal Chem 125:73–88. doi:10.​1016/​S0022-0728(81)80325-7 CrossRef
    43.Bełtowska-Brzezinska M, Łuczak T, Baltruschat H, Müller U (2003) Propene oxidation and hydrogenation on a porous platinum electrode in acidic solution. J Phys Chem B 107:4793–4800. doi:10.​1021/​jp021726f CrossRef
    44.Yang M-L, Zhu Y-A, Fan C, Sui Z-J, Chen D, Zhou X-G (2010) Density functional study of the chemisorption of C-1, C-2 and C-3 intermediates in propane dissociation on Pt(111). J Mol Catal A 321:42–49. doi:10.​1016/​j.​molcata.​2010.​01.​017 CrossRef
    45.Reiser CA, Resnick G (2004) End-cell thermal distancing for fuel cell system. United States Patent 6,824,901
    46.Houlberg SE (2007) Fuel cell stack with passive end cell heater. United States Patent 7,160,640
    47.Arthur DA, Alp AB (2010) Fuel cell stack end cell control methodology. United States Patent 7,718,291
    48.Alp AB, Arthur DA (2011) Fuel cell reliability improvement by using stack end plate temperature sensors. United States Patent 7,862,949
    49.Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature-dependence of the electrode-kinetics of oxygen reduction at the platinum Nafion® interface—a microelectrode investigation. J Electrochem Soc 139:2530–2537. doi:10.​1149/​1.​2221258 CrossRef
    50.Thompson EL, Jorne J, Gasteiger HA (2007) Oxygen reduction reaction kinetics in subfreezing PEM fuel cells. J Electrochem Soc 154:B783–B792. doi:10.​1149/​1.​2742305 CrossRef
    51.Abdullah AM, Saleh MM, Awad MI, Okajima T, Kitamura F, Ohsaka T (2010) Temperature effect on the recovery of SO2-poisoned GC/nano-Pt electrode towards oxygen reduction. J Solid State Electrochem 14:1727–1734. doi:10.​1007/​s10008-010-1023-y CrossRef
    52.Sethuraman VA, Weidner JW (2010) Analysis of sulfur poisoning on a PEM fuel cell electrode. Electrochim Acta 55:5683–5694. doi:10.​1016/​j.​electacta.​2010.​05.​004 CrossRef
    53.Sethuraman VA, Khan S, Jur JS, Haug AT, Weidner JW (2009) Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes. Electrochim Acta 54:6850–6860. doi:10.​1016/​j.​electacta.​2009.​06.​068 CrossRef
    54.Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B (2006) Model based PEM fuel cell state-of-health monitoring via ac impedance measurements. J Power Sour 159:905–913. doi:10.​1016/​j.​jpowsour.​2005.​11.​035 CrossRef
    55.Pan Y, Zhang JM, Guan WM, Zhang KH, Chen S (2011) Adsorption site preference of CO2 on the Pt(100) surface by ab initio calculations. J Phys Chem Solids 72:1–4. doi:10.​1016/​j.​jpcs.​2010.​09.​017 CrossRef
    56.St-Pierre J, Wilkinson DP, Knights S, Bos ML (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J New Mater Electrochem Syst 3:99–106
    57.Urdampilleta IG, Uribe FA, Rockward T, Brosha EL, Pivovar B, Garzon FH (2007) PEMFC poisoning with H2S: Dependence on operating conditions. Electrochem Soc Trans 11(1):831–842. doi:10.​1149/​1.​2780996
    58.Marécot P, Fakche A, Kellali B, Mabilon G, Prigent M, Barbier J (1994) Propane and propene oxidation over platinum and palladium on alumina—effects of chloride and water. Appl Catal B 3:283–294. doi:10.​1016/​0926-3373(94)00003-4 CrossRef
    59.González-Velasco JR, Botas JA, González-Marcos JA, Gutiérrez-Ortiz MA (1997) Influence of water and hydrocarbon processed in feedstream on the three-way behaviour of platinum-alumina catalysts. Appl Catal B 12:61–79. doi:10.​1016/​S0926-3373(96)00058-6 CrossRef
    60.McGarry M, Grega L (2005) Effects of inlet mass flow distribution and magnitude on reactant distribution for PEM fuel cells. J Fuel Cell Sci Technol 3:45–50. doi:10.​1115/​1.​2134736 CrossRef
    61.Avila MS, Vignatti CI, Apesteguía CR, Garetto TF (2014) Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chem Eng J 241:52–59. doi:10.​1016/​j.​cej.​2013.​12.​006 CrossRef
    62.Benard S, Ousmane M, Retailleau L, Boreave A, Vernoux P, Giroir-Fendler A (2009) Catalytic removal of propene and toluene in air over noble metal catalyst. Can J Civil Eng 36:1935–1945. doi:10.​1139/​L09-135 CrossRef
    63.Benard S, Baylet A, Vernoux P, Valverde JL, Giroir-Fendler A (2013) Kinetics of the propene oxidation over a Pt/alumina catalyst. Catal Commun 36:63–66. doi:10.​1016/​j.​catcom.​2013.​03.​001 CrossRef
    64.Serra MCC, da Fonseca MMR, Calado JCG, Palavra AMF (1998) Solubility of propene in water and in a mineral medium for the cultivation of a Xanthobacter strain. J Solut Chem 27:455–461. doi:10.​1023/​A:​1022604705859 CrossRef
    65.Mulder G, De Ridder F, Coenen P, Weyen D, Martens A (2008) Evaluation of an on-site cell voltage monitor for fuel cell systems. Int J Hydrogen Energy 33:5728–5737. doi:10.​1016/​j.​ijhydene.​2008.​07.​017 CrossRef
    66.Brunner D, Prasad AK, Advani SG, Peticolas BW (2010) A robust cell voltage monitoring system for analysis and diagnosis of fuel cell or battery systems. J Power Sour 195:8006–8012. doi:10.​1016/​j.​jpowsour.​2010.​06.​054 CrossRef
    67.Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime, PEFC and DMFC. J Power Sour 127:127–134. doi:10.​1016/​j.​jpowsour.​2003.​09.​033 CrossRef
    68.Zhai Y, Bender G, Bethune K, Rocheleau R (2014) Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells. J Power Sour 247:40–48. doi:10.​1016/​j.​jpowsour.​2013.​08.​054 CrossRef
    69.Ramaker DE, Gatewood D, Korovina A, Garsany Y, Swider-Lyons KE (2010) Resolving sulfur oxidation and removal from Pt and Pt3Co electrocatalysts using in situ x-ray absorption spectroscopy. J Phys Chem C 114:11886–11897. doi:10.​1021/​jp101977g CrossRef
    70.St-Pierre J, Jia N, Rahmani R (2008) PEMFC contamination model: competitive adsorption demonstrated with NO2. J Electrochem Soc 155:B315–B320. doi:10.​1149/​1.​2833301 CrossRef
    71.Lee SJ, Mukerjee S, Ticianelli EA, McBreen J (1999) Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim Acta 44:3283–3293. doi:10.​1016/​S0013-4686(99)00052-3 CrossRef
    72.Marković NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrcatalysts. Surf Sci Rep 45:117–229. doi:10.​1016/​S0167-5729(01)00022-X CrossRef
    73.O’Brien JA, Hinkley JT, Donne SW, Lindquist S-E (2010) The electrochemical oxidation of aqueous sulfur dioxide: a critical review of work with respect to the hybrid sulfur cycle. Electrochim Acta 55:573–591. doi:10.​1016/​j.​electacta.​2009.​09.​067 CrossRef
  • 作者单位:Jean St-Pierre (1)
    Maheboob B. V. Virji (1)

    1. Hawaii Natural Energy Institute, University of Hawaii – Manoa, Honolulu, Hawaii, 96822, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-8838
文摘
A 36-cell proton exchange membrane fuel cell (PEMFC) stack was contaminated with 50 ppm propene in air. Propene contamination amplified the uneven cell performance distribution along the stack length. End cells showed a larger performance change due to contamination than contiguous cells owing to a lower temperature and a larger effect of contamination at lower temperatures. The performance change of the inner cells linearly varied from cell 2 to cell 35 and was attributed to several causes including the uneven sub-saturated air flow distribution and the propene oxidation reaction involving a water molecule. The inner cells performance distribution was also credited to the uneven coolant flow distribution and a large effect of temperature on contamination. Higher cathode potentials acted as a cleaning method that minimized the contamination effect by promoting propene oxidation and led to weakly adsorbing CO2. As a consequence, higher cathode potentials also resulted in smoothing the uneven inner cells performance distribution. Keywords Proton exchange membrane fuel cell Fuel cell stack Voltage distribution Air stream contaminant

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700