用户名: 密码: 验证码:
Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network
详细信息    查看全文
  • 作者:Ke Xu ; Wei Xiong ; Ming Zhou ; Heran Wang ; Jing Yang…
  • 关键词:BRD7 ; ChIP ; sequencing ; Digital gene expression (DGE) ; Apoptosis ; Cell cycle
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:411
  • 期:1-2
  • 页码:57-71
  • 全文大小:5,658 KB
  • 参考文献:1.Yu Y, Zhu S, Zhang B, Zhou M, Li X, Li G (2002) Screening of BRD7 interacting proteins by yeast two-hybrid system. Sci China C Life Sci 45:546–552. doi:10.​1360/​02yc9060 CrossRef PubMed
    2.Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG, Xiong W, Liu HY, Huang H, Zhou M, Li GY (2004) BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 200:89–98. doi:10.​1002/​jcp.​20013 CrossRef PubMed
    3.Zeng Z, Huang H, Zhang W, Xiang B, Zhou M, Zhou Y, Ma J, Yi M, Li X, Li X, Xiong W, Li G (2011) Nasopharyngeal carcinoma: advances in genomics and molecular genetics. Sci China Life Sci 54:966–975. doi:10.​1007/​s11427-011-4223-5 CrossRef PubMed
    4.Zeng Z, Zhou Y, Zhang W, Li X, Xiong W, Liu H, Fan S, Qian J, Wang L, Li Z, Shen S, Li G (2006) Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med 8:156–160. doi:10.​1097/​01.​gim.​0000196821.​87655.​d0 CrossRef PubMed
    5.Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL, Hu DX, Tan C, Xiang JJ, Zhou J, Deng H, Fan SQ, Li WF, Wang R, Zhou M, Zhu SG, Lu HB, Qian J, Zhang BC, Wang JR, Ma J, Xiao BY, Huang H, Zhang QH, Zhou YH, Luo XM, Zhou HD, Yang YX, Dai HP, Feng GY, Pan Q, Wu LQ, He L, Li GY (2004) A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64:1972–1974CrossRef PubMed
    6.Sokolenko AP, Preobrazhenskaya EV, Aleksakhina SN, Iyevleva AG, Mitiushkina NV, Zaitseva OA, Yatsuk OS, Tiurin VI, Strelkova TN, Togo AV, Imyanitov EN (2015) Candidate gene analysis of BRCA1/2 mutation-negative high-risk Russian breast cancer patients. Cancer Lett 359:259–261. doi:10.​1016/​j.​canlet.​2015.​01.​022 CrossRef PubMed
    7.Kikuchi M, Okumura F, Tsukiyama T, Watanabe M, Miyajima N, Tanaka J, Imamura M, Hatakeyama S (2009) TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta 1793:1828–1836. doi:10.​1016/​j.​bbamcr.​2009.​11.​001 CrossRef PubMed
    8.Park YA, Lee JW, Choi JJ, Jeon HK, Cho Y, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS (2012) The interactions between MicroRNA-200c and BRD7 in endometrial carcinoma. Gynecol Oncol 124:125–133. doi:10.​1016/​j.​ygyno.​2011.​09.​026 CrossRef PubMed
    9.Wu WJ, Hu KS, Chen DL, Zeng ZL, Luo HY, Wang F, Wang DS, Wang ZQ, He F, Xu RH (2013) Prognostic relevance of BRD7 expression in colorectal carcinoma. Eur J Clin Investig 43:131–140. doi:10.​1111/​eci.​12024 CrossRef
    10.Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH, Choi JJ, Jeon HK, Cho YJ, Ryu JY, Kim BG, Bae DS (2014) Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 20:565–575. doi:10.​1158/​1078-0432.​CCR-13-1271 CrossRef PubMed
    11.Zhu B, Tian J, Zhong R, Tian Y, Chen W, Qian J, Zou L, Xiao M, Shen N, Yang H, Lou J, Qiu Q, Ke J, Lu X, Song W, Li H, Liu L, Wang L, Miao X (2014) Genetic variants in the SWI/SNF complex and smoking collaborate to modify the risk of pancreatic cancer in a Chinese population. Mol Carcinog. doi:10.​1002/​mc.​22140 PubMedCentral
    12.Tang H, Wang Z, Liu Q, Liu X, Wu M, Li G (2014) Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PLoS ONE 9:e84146. doi:10.​1371/​journal.​pone.​0084146 PubMedCentral CrossRef PubMed
    13.Hu K, Liao D, Wu W, Han AJ, Shi HJ, Wang F, Wang X, Zhong L, Duan T, Wu Y, Cao J, Tang J, Sang Y, Wang L, Lv X, Xu S, Zhang RH, Deng WG, Li SP, Zeng YX, Kang T (2014) Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget 5:3088–3100PubMedCentral CrossRef PubMed
    14.Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR, Li GY (2007) BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 303:141–149. doi:10.​1007/​s11010-007-9466-x CrossRef PubMed
    15.Zhou M, Xu XJ, Zhou HD, Liu HY, He JJ, Li XL, Peng C, Xiong W, Fan SQ, Lu JH, Ouyang J, Shen SR, Xiang B, Li GY (2006) BRD2 is one of BRD7-interacting proteins and its over-expression could initiate apoptosis. Mol Cell Biochem 292:205–212. doi:10.​1007/​s11010-006-9233-4 CrossRef PubMed
    16.Burrows AE, Smogorzewska A, Elledge SJ (2010) Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci USA 107:14280–14285. doi:10.​1073/​pnas.​1009559107 PubMedCentral CrossRef PubMed
    17.Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R, Del Sal G (2010) BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12:380–389. doi:10.​1038/​ncb2038 CrossRef PubMed
    18.Penkert J, Schlegelberger B, Steinemann D, Gadzicki D (2012) No evidence for breast cancer susceptibility associated with variants of BRD7, a component of p53 and BRCA1 pathways. Fam Cancer 11:601–606. doi:10.​1007/​s10689-012-9556-0 CrossRef PubMed
    19.Kaeser MD, Aslanian A, Dong MQ, Yates JR 3rd, Emerson BM (2008) BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 283:32254–32263. doi:10.​1074/​jbc.​M806061200 PubMedCentral CrossRef PubMed
    20.Zhou M, Liu H, Xu X, Zhou H, Li X, Peng C, Shen S, Xiong W, Ma J, Zeng Z, Fang S, Nie X, Yang Y, Zhou J, Xiang J, Cao L, Peng S, Li S, Li G (2006) Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem 98:920–930. doi:10.​1002/​jcb.​20788 CrossRef PubMed
    21.Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C, Dai H, Wu J, Shi Y (2007) Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem Biophys Res Commun 358:435–441. doi:10.​1016/​j.​bbrc.​2007.​04.​139 CrossRef PubMed
    22.Harte MT, O’Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, Mullan PB, Harkin DP (2010) BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 70:2538–2547. doi:10.​1158/​0008-5472.​CAN-09-2089 CrossRef PubMed
    23.Mantovani F, Drost J, Voorhoeve PM, Del Sal G, Agami R (2010) Gene regulation and tumor suppression by the bromodomain-containing protein BRD7. Cell Cycle 9:2777–2781CrossRef PubMed
    24.Liu H, Peng C, Zhou M, Zhou J, Shen S, Zhou H, Xiong W, Luo X, Peng S, Niu Z, Ouyang J, Li X, Li G (2006) Cloning and characterization of the BRD7 gene promoter. DNA Cell Biol 25:346–358. doi:10.​1089/​dna.​2006.​25.​346 CrossRef PubMed
    25.Liu H, Zhou M, Luo X, Zhang L, Niu Z, Peng C, Ma J, Peng S, Zhou H, Xiang B, Li X, Li S, He J, Li X, Li G (2008) Transcriptional regulation of BRD7 expression by Sp1 and c-Myc. BMC Mol Biol 9:111. doi:10.​1186/​1471-2199-9-111 PubMedCentral CrossRef PubMed
    26.Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858. doi:10.​1038/​nature07730 PubMedCentral CrossRef PubMed
    27.Liang F, Xu K, Gong ZJ, Li Q, Ma J, Xiong W, Zeng ZY, Li GY (2013) ChIP-seq: a new technique for genome-wide profiling of protein-DNA interaction. Progr Biochem Biophys 40:216–227. doi:10.​3724/​Sp.​J.​1206.​2012.​00305
    28.Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos PM, Haber DA (2010) Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods 7:619–621. doi:10.​1038/​nmeth.​1480 PubMedCentral CrossRef PubMed
    29.Zeng Z, Huang H, Huang L, Sun M, Yan Q, Song Y, Wei F, Bo H, Gong Z, Zeng Y, Li Q, Zhang W, Li X, Xiang B, Li X, Li Y, Xiong W, Li G (2014) Regulation network and expression profiles of Epstein–Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. Sci China Life Sci 57:315–326. doi:10.​1007/​s11427-013-4577-y CrossRef PubMed
    30.Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, Li X, Chen P, Liang F, Xiang B, Ma J, Wu M, Tang H, Deng M, Zeng X, Tang K, Xiong W, Li G (2014) LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene 33:2098–2109. doi:10.​1038/​onc.​2013.​161 CrossRef PubMed
    31.Yang Y, Liao Q, Wei F, Li X, Zhang W, Fan S, Shi L, Li X, Gong Z, Ma J, Zhou M, Xiang J, Peng S, Xiang B, Deng H, Yang Y, Li Y, Xiong W, Zeng Z, Li G (2013) LPLUNC1 inhibits nasopharyngeal carcinoma cell growth via down-regulation of the MAP kinase and cyclin D1/E2F pathways. PLoS ONE 8:e62869. doi:10.​1371/​journal.​pone.​0062869 PubMedCentral CrossRef PubMed
    32.Wei F, Li XY, Li XL, Zhang WL, Liao QJ, Zeng Y, Gong ZJ, Zhou M, Ma J, Xiong W, Shen SR, Zeng ZY (2014) The effect and mechanism of PLUNC protein family against inflammation and carcinogenesis of nasopharyngeal carcinoma. Progr Biochem Biophys 41:24–31. doi:10.​3724/​Sp.​J.​1206.​2013.​00396
    33.Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, Wang S, Chen L, Barlogie B, Shaughnessy JD Jr, Zhan F (2008) An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 112:4235–4246. doi:10.​1182/​blood-2007-10-119123 PubMedCentral CrossRef PubMed
    34.Gong ZJ, Huang HB, Xu K, Liang F, Li XL, Xiong W, Zeng ZY, Li GY (2012) Advances in microRNAs and TP53 gene regulatory network. Progr Biochem Biophys 39:1133–1144. doi:10.​3724/​Sp.​J.​1206.​2012.​00015 CrossRef
    35.Zhang W, Fan S, Zou G, Shi L, Zeng Z, Ma J, Zhou Y, Li X, Zhang X, Li X, Tan M, Xiong W, Li G (2015) Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol 36:675–683. doi:10.​1007/​s13277-014-2650-1 CrossRef PubMed
    36.Zhang W, Zeng Z, Fan S, Wang J, Yang J, Zhou Y, Li X, Huang D, Liang F, Wu M, Tang K, Cao L, Li X, Xiong W, Li G (2012) Evaluation of the prognostic value of TGF-beta superfamily type I receptor and TGF-beta type II receptor expression in nasopharyngeal carcinoma using high-throughput tissue microarrays. J Mol Histol 43:297–306. doi:10.​1007/​s10735-012-9392-4 CrossRef PubMed
    37.Zeng Z, Zhou Y, Xiong W, Luo X, Zhang W, Li X, Fan S, Cao L, Tang K, Wu M, Li G (2007) Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray. J Cancer Res Clin Oncol 133:71–81. doi:10.​1007/​s00432-006-0136-2 CrossRef PubMed
    38.Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, Shen SR, Li GY (2007) Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol 38:120–133. doi:10.​1016/​j.​humpath.​2006.​06.​023 CrossRef PubMed
    39.Huang HB, Liang F, Xiong W, Li XL, Zeng ZY, Li GY (2012) Bioinformatics accelerates drug repositioning. Progr Biochem Biophys 39:35–44. doi:10.​3724/​Sp.​J.​1206.​2011.​00453 CrossRef
    40.Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. doi:10.​1093/​nar/​gkl198 PubMedCentral CrossRef PubMed
    41.Shen Y, Katsaros D, Loo LW, Hernandez BY, Chong C, Canuto EM, Biglia N, Lu L, Risch H, Chu WM, Yu H (2015) Prognostic and predictive values of long non-coding RNA LINC00472 in breast cancer. Oncotarget 6:8579–8592PubMedCentral CrossRef PubMed
    42.Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M, Jiricny J, Buffoli F, Marra G (2013) Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis 2:e56. doi:10.​1038/​oncsis.​2013.​21 PubMedCentral CrossRef PubMed
    43.Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol 36:1477–1486. doi:10.​1007/​s13277-014-2631-4 CrossRef PubMed
    44.Ma KX, Wang HJ, Li XR, Li T, Su G, Yang P, Wu JW (2015) Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol 36:3355–3359. doi:10.​1007/​s13277-014-2969-7 CrossRef PubMed
    45.Pang EJ, Yang R, Fu XB, Liu YF (2015) Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol 36:2403–2407. doi:10.​1007/​s13277-014-2850-8 CrossRef PubMed
    46.Zhang HM, Yang FQ, Chen SJ, Che J, Zheng JH (2015) Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol 36:2947–2955. doi:10.​1007/​s13277-014-2925-6 CrossRef PubMed
    47.Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, Xu TP, Xia R, Yang JS, De W, Chen J (2014) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5:2276–2292PubMedCentral CrossRef PubMed
    48.Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11–18. doi:10.​1002/​jcb.​22077 CrossRef PubMed
    49.Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680. doi:10.​1038/​nrg2641 PubMedCentral CrossRef PubMed
    50.Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher JP (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina genome analyzer. BMC Genomics 10:531. doi:10.​1186/​1471-2164-10-531 PubMedCentral CrossRef PubMed
    51.Dyson MH, Rose S, Mahadevan LC (2001) Acetyllysine-binding and function of bromodomain-containing proteins in chromatin. Front Biosci 6:D853–D865CrossRef PubMed
    52.Horn PJ, Peterson CL (2001) The bromodomain: a regulator of ATP-dependent chromatin remodeling? Front Biosci 6:D1019–D1023CrossRef PubMed
    53.Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353. doi:10.​1038/​379349a0 CrossRef PubMed
    54.Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223. doi:10.​1093/​emboj/​17.​8.​2215 PubMedCentral CrossRef PubMed
    55.Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700. doi:10.​1016/​j.​molcel.​2008.​05.​014 CrossRef PubMed
    56.Samuel T, Okada K, Hyer M, Welsh K, Zapata JM, Reed JC (2005) cIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Res 65:210–218PubMed
    57.Jin HS, Lee TH (2006) Cell cycle-dependent expression of cIAP2 at G2/M phase contributes to survival during mitotic cell cycle arrest. Biochem J 399:335–342. doi:10.​1042/​BJ20060612 PubMedCentral CrossRef PubMed
    58.Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP (2004) Thioredoxin and its role in toxicology. Toxicol Sci 78:3–14. doi:10.​1093/​toxsci/​kfh050 CrossRef PubMed
    59.Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483. doi:10.​1021/​bi700449x CrossRef PubMed
    60.Hansen JM, Zhang H, Jones DP (2006) Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. Toxicol Sci 91:643–650. doi:10.​1093/​toxsci/​kfj175 CrossRef PubMed
    61.Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537. doi:10.​1158/​0008-5472.​CAN-05-1069 CrossRef PubMed
    62.Hassan WA, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T (2014) Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer 86:304–310. doi:10.​1016/​j.​lungcan.​2014.​10.​007 CrossRef PubMed
    63.Jiang L, Wu J, Chen Q, Hu X, Li W, Hu G (2011) Notch1 expression is upregulated in glioma and is associated with tumor progression. J Clin Neurosci 18:387–390. doi:10.​1016/​j.​jocn.​2010.​07.​131 CrossRef PubMed
    64.Gao C, Liu SG, Zhang RD, Li WJ, Zhao XX, Cui L, Wu MY, Zheng HY, Li ZG (2014) NOTCH1 mutations are associated with favourable long-term prognosis in paediatric T-cell acute lymphoblastic leukaemia: a retrospective study of patients treated on BCH-2003 and CCLG-2008 protocol in China. Br J Haematol 166:221–228. doi:10.​1111/​bjh.​12866 CrossRef PubMed
    65.Gong Z, Zhang S, Zeng Z, Wu H, Yang Q, Xiong F, Shi L, Yang J, Zhang W, Zhou Y, Zeng Y, Li X, Xiang B, Peng S, Zhou M, Tan M, Li Y, Xiong W, Li G (2014) LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2. PLoS ONE 9:e110674. doi:10.​1371/​journal.​pone.​0110674 PubMedCentral CrossRef PubMed
    66.Gong Z, Zhang S, Zhang W, Huang H, Li Q, Deng H, Ma J, Zhou M, Xiang J, Wu M, Li X, Xiong W, Li X, Li Y, Zeng Z, Li G (2012) Long non-coding RNAs in cancer. Sci China Life Sci 55:1120–1124. doi:10.​1007/​s11427-012-4413-9 CrossRef PubMed
    67.Zhang W, Huang C, Gong Z, Zhao Y, Tang K, Li X, Fan S, Shi L, Li X, Zhang P, Zhou Y, Huang D, Liang F, Zhang X, Wu M, Cao L, Wang J, Li Y, Xiong W, Zeng Z, Li G (2013) Expression of LINC00312, a long intergenic non-coding RNA, is negatively correlated with tumor size but positively correlated with lymph node metastasis in nasopharyngeal carcinoma. J Mol Histol 44:545–554. doi:10.​1007/​s10735-013-9503-x CrossRef PubMed
    68.Tang K, Wei F, Bo H, Huang HB, Zhang WL, Gong ZJ, Li XY, Song YL, Liao QJ, Peng SP, Xiang JJ, Zhou M, Ma J, Li XL, Xiong W, Li Y, Zeng ZY, Li GY (2014) Cloning and functional characterization of a novel long non-coding RNA gene associated with hepatocellular carcinoma. Progr Biochem Biophys 41:153–162. doi:10.​3724/​Sp.​J.​1206.​2012.​00613
    69.Bo H, Gong Z, Zhang W, Li X, Zeng Y, Liao Q, Chen P, Shi L, Lian Y, Jing Y, Tang K, Li Z, Zhou Y, Zhou M, Xiang B, Li X, Yang J, Xiong W, Li G and Zeng Z (2015) Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget 6:20404–20418. doi:10.​18632/​oncotarget.​4057 PubMedCentral CrossRef PubMed
    70.Zeng Z, Bo H, Gong Z, Lian Y, Li X, Li X, Zhang W, Deng H, Zhou M, Peng S, Li G, Xiong W (2015) AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumour Biol. doi:10.​1007/​s13277-015-3860-x
    71.Zeng Z, Fan S, Zhang X, Li S, Zhou M, Xiong W, Tan M, Zhang W, Li G (2015) Epstein–Barr virus-encoded small RNA 1 (EBER-1) could predict good prognosis in nasopharyngeal carcinoma. Clin Transl Oncol. doi:10.​1007/​s12094-015-1354-3
    72.Li YW, Wang YM, Zhang XY, Xue D, Kuang B, Pan XY, Jing YZ, Li XL, Zhou M, Xiong W, Zeng ZY, Li GY (2015) Progress of long noncoding RNA HOTAIR in human cancer. Progr Biochem Biophys 42:228–235. doi:10.​16476/​j.​pibb.​2014.​0230
  • 作者单位:Ke Xu (1) (2)
    Wei Xiong (1) (2) (3)
    Ming Zhou (1) (2) (3)
    Heran Wang (1) (2)
    Jing Yang (2)
    Xiayu Li (3)
    Pan Chen (1)
    Qianjin Liao (1)
    Hao Deng (3)
    Xiaoling Li (1) (2) (3)
    Guiyuan Li (1) (2) (3)
    Zhaoyang Zeng (1) (2) (3)

    1. Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
    2. Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
    3. Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
BRD7 is a single bromodomain-containing protein that functions as a subunit of the SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well-known tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. In this paper, we report an integrative analysis of genome-wide chromatin occupancy of BRD7 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and digital gene expression (DGE) profiling by RNA-sequencing upon the overexpression of BRD7 in human cells. We localized 156 BRD7-binding peaks representing 184 genes by ChIP-sequencing, and most of these peaks were co-localized with histone modification sites. Four novel motifs were significantly represented in these BRD7-enriched regions. Ingenuity pathway analysis revealed that 22 of these BRD7 target genes were involved in a network regulating cell death and survival. DGE profiling identified 560 up-regulated genes and 1088 down-regulated genes regulated by BRD7. Using Gene Ontology and pathway analysis, we found significant enrichment of the cell cycle and apoptosis pathway genes. For the integrative analysis of the ChIP-seq and DEG data, we constructed a regulating network of BRD7 downstream genes, and this network suggests multiple feedback regulations of the pathways. Furthermore, we validated BIRC2, BIRC3, TXN2, and NOTCH1 genes as direct, functional BRD7 targets, which were involved in the cell cycle and apoptosis pathways. These results provide a genome-wide view of chromatin occupancy and the gene regulation network of the BRD7 signaling pathway. Keywords BRD7 ChIP-sequencing Digital gene expression (DGE) Apoptosis Cell cycle

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700