用户名: 密码: 验证码:
Joint physical and link layer error control analysis for nanonetworks in the Terahertz band
详细信息    查看全文
  • 作者:N. Akkari ; J. M. Jornet ; P. Wang ; E. Fadel ; L. Elrefaei…
  • 刊名:Wireless Networks
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 页码:1221-1233
  • 全文大小:920 KB
  • 刊物类别:Computer Science
  • 刊物主题:Computer Communication Networks
    Electronic and Computer Engineering
    Business Information Systems
  • 出版者:Springer Netherlands
  • ISSN:1572-8196
  • 卷排序:22
文摘
Nanonetworks consist of nano-sized communicating devices which are able to perform simple tasks at the nanoscale. The limited capabilities of individual nanomachines and the Terahertz (THz) band channel behavior lead to error-prone wireless links. In this paper, a cross-layer analysis of error-control strategies for nanonetworks in the THz band is presented. A mathematical framework is developed and used to analyze the tradeoffs between Bit Error Rate, Packet Error Rate, energy consumption and latency, for five different error-control strategies, namely, Automatic Repeat reQuest (ARQ), Forward Error Correction (FEC), two types of Error Prevention Codes (EPC) and a hybrid EPC. The cross-layer effects between the physical and the link layers as well as the impact of the nanomachine capabilities in both layers are taken into account. At the physical layer, nanomachines are considered to communicate by following a time-spread on-off keying modulation based on the transmission of femtosecond-long pulses. At the link layer, nanomachines are considered to access the channel in an uncoordinated fashion, by leveraging the possibility to interleave pulse-based transmissions from different nodes. Throughout the analysis, accurate path loss, noise and multi-user interference models, validated by means of electromagnetic simulation, are utilized. In addition, the energy consumption and latency introduced by a hardware implementation of each error control technique, as well as, the additional constraints imposed by the use of energy-harvesting mechanisms to power the nanomachines, are taken into account. The results show that, despite their simplicity, EPCs outperform traditional ARQ and FEC schemes, in terms of error correcting capabilities, which results in further energy savings and reduced latency.KeywordsNanonetworksTerahertz bandError controlPulse-based communication

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700