用户名: 密码: 验证码:
Natural Variation in Grain Selenium Concentration of Wild Barley, Hordeum spontaneum, Populations from Israel
详细信息    查看全文
  • 作者:Yan Jun (1) (2)
    Wang Fang (1)
    Qin Haibo (3)
    Chen Guoxiong (4)
    Nevo Eviatar (2)
    Tzion Fahima (2)
    Cheng Jianping (1)
  • 关键词:Ecogeographical factors ; Grain selenium concentration ; Hordeum spontaneum ; Israel ; Wild barley
  • 刊名:Biological Trace Element Research
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:142
  • 期:3
  • 页码:773-786
  • 全文大小:288KB
  • 参考文献:1. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233-41 CrossRef
    2. Reilly C (2006) Selenium in food and health, 2nd edn. Springer, New York, p p198
    3. Seboussi R, Faye B, Alhadrami G et al (2010) Selenium distribution in camel blood and organs after different level of dietary selenium supplementation. Biol Trace Elem Res 133:34-0 CrossRef
    4. Combs GF (2001) Selenium in global food systems. Br J Nutr 85:517-47 CrossRef
    5. Lyons GH, Stangoulis JCR, Graham RD (2003) High-selenium wheat: biofortification for better health. Nutr Res Rev 16:45-0 CrossRef
    6. Lyons GH (2010) Selenium in cereals—improving the efficiency of agronomic. Plant Soil 332:1- CrossRef
    7. Combs GF (1988) Selenium in foods. In: Chichester CO, Schweiger BS (eds) Advances in Food Research. Academic, San Diego, pp 85-13
    8. Bugel S, Sandstrom B, Larsen EH, Skibsted LH (2002) Is selenium from animal sources bioavailable? Eleventh Symposium on Trace Elements in Man and Animals, 2- June 2002, Trace Elements in Man and Animals Committee, Berkeley
    9. Yang X, Tian Y, Ha P, Gu L (1997) Determination of the selenomethionine content in grain and in human blood. Wei Sheng Yen Chiku (J Hyg Res) 26:113-16
    10. Schrauzer GN (2001) Nutritional selenium supplements: product types, quality and safety. J Am Coll Nutr 20:1-
    11. FAO/WHO (2001) Human vitamin and mineral requirements. Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand. Food and Nutrition Division, FAO, Rome
    12. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1-7 CrossRef
    13. Fordyce FM (2005) Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology. Elsevier, London, pp 373-15
    14. Uauy C, Distelfeld A, Fahima T et al (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1299-301 CrossRef
    15. Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403-11 CrossRef
    16. Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407-17 CrossRef
    17. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353-64 CrossRef
    18. Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, / Hordeum spontaneum, in the Fertile Crescent. In: Shewry P (ed) Barley: genetics, molecular biology and biotechnology. C.A.B. International, Wallingford, pp 19-3
    19. Zohary D (1969) The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the old world. In: Ucko PJ, Dimbelby GW (eds) Domestication and exploitation of plants and animals. Gerald Duckworth, London, pp 47-6
    20. Zohary D, Hopf M (1988) Domestication of plants in the old world. Clarendon, Oxford
    21. Nevo E, Beiles A, Gutterman Y et al (1984) Genetic resources of wild cereals in Israel and the vicinity: II. Phenotypic variation within and between populations of wild barley, / Hordeum spontaneum. Euphytica 33:737-56 CrossRef
    22. Nevo E, Beiles A, Zohary D (1986) Genetic resources of wild barley in the near East: structure, evolution and application in breeding. Biol J Linn Soc 27(4):355-80 CrossRef
    23. Nevo E, Apelbaum-Elkaher I, Garty J et al (1997) Natural selection causes microscale allozyme diversity in wild barley and a lichen at “Evolution Canyon-Mt. Carmel, Israel. Heredity 78:373-82 CrossRef
    24. Nevo E, Korol AB, Beiles A et al (2002) Evolution of wild emmer and wheat improvement—population genetics, genetic resources, and genome organization of wheat's progenitor, / Triticum dicoccoides. Springer, Berlin
    25. Nevo E (1986) Genetic resources of wild cereals and crop improvement: Israel, a natural laboratory. Isr J Botan 35:255-78
    26. Nevo E (2004) Population genetic structure of cereal wild progenitors. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Press, Dordrecht, pp 135-63
    27. Brantestam AK (2005) A century of breeding—is genetic erosion a reality? Temporal diversity changes in Nordic and Baltic barley. Ph.D. Thesis submitted to Swedish University of Agricultural Sciences, Alnarp
    28. Zhu JM, Li L, Qin HB et al (2008) Determination of total selemium in environmental samples by hydride generation-atomic fluorescence spectrometry with PTFE bomb. Actamneral Sin 28(2):880-81, in Chinese
    29. World Health Organization (1987) Selenium. A Report of the International Programme on Chemical Safety. Environmental Health Criteria 58, World Health Organization, Geneva
    30. WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva
    31. Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46(3):282-92 CrossRef
    32. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391-02 CrossRef
    33. National Health and Medical Research Council (2005) Nutrient reference values for Australia and New Zealand including recommended dietary intakes. Commonwealth of Australia, Canberra, p 316
    34. Department of Health (1991) Dietary reference values for food energy and nutrients for the United Kingdom. Report on Health and Social Subjects, No. 41, Her Majesty's Stationery Office, London
    35. Barclay MNI, Macpherson A (1986) Selenium content of wheat flour used in the UK. J Sci Food Agric 37:1133-138 CrossRef
    36. Gissel-Nielsen G, Gupta UC, Lamand M et al (1984) Selenium in soils and plants and its importance in livestock and human nutrition. Adv Agron 37:397-60 CrossRef
    37. Aro A, Kumpulainen J, Alfthan G et al (1994) Factors affecting the selenium intake of people in Transbaikalian Russia. Biol Trace Elem Res 40:277-85 CrossRef
    38. Alfthan G, Neve J (1996) Selenium intakes and plasma selenium levels in various populations. In: Kumpulainen J, Salonen J (eds) Natural antioxidants and food quality in atherosclerosis and cancer prevention. Royal Society of Chemistry, Cambridge, pp 161-67
    39. Meltzer HM, Bibow K, Paulsen IT et al (1993) Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se. Biol Trace Elem Res 36:229-41 CrossRef
    40. Fox TE, Atherton C, Dainty JR et al (2005) Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes. Int J Vitam Nutr Res 75:179-86 CrossRef
    41. Lyons GH, Ortiz-Monasterio I, Stangoulis JCR et al (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269:369-80 CrossRef
    42. Lyons GH, Genc Y, Stangoulis JCR et al (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103:155-68 CrossRef
    43. Lyons GH, Judson GJ, Ortiz-Monasterio I et al (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75-2 CrossRef
    44. Zhang CX, Yan J, Cheng JP et al (2009) Variance analysis of grain selenium density in wild emmer wheat, / Triticum dicoccoide. J Trop Subtrop Bot 17(3):229-36, in Chinese
    45. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products: a review. Food Res Int 41:850-68 CrossRef
    46. Koornneef M, Alonso-blanco C, Peeters AJM (1997) Genetic approaches in plant physiology. New Phytol 137:1- CrossRef
    47. Schulte D, Close TJ, Graner A et al (2009) The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142-47 CrossRef
    48. Chen G, Suprunova T, Krugman T et al (2004) Ecogeographic and genetic determinants of kernel weight and colour of wild barley ( / Hordeum spontaneum) populations in Israel. Seed Sci Res 14:137-46 CrossRef
    49. Chen G, Komatsuda T, Pourkheirandish M et al (2009) Mapping of the / eibi1 gene responsible for the drought hypersensitive cuticle in wild barley ( / Hordeum spontaneum). Breed Sci 59:21-6 CrossRef
    50. Chen G, Krugman T, Fahima T et al (2010) Chromosomal regions controlling seedling drought resistance in Israeli wild barley, / Hordeum spontaneum C. Koch. Genet Resour Crop Evol 57:85-9 CrossRef
    51. Zhang F, Chen G, Huang Q et al (2005) Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theor Appl Genet 110:445-53 CrossRef
    52. Yan J, Chen GX, Cheng JP et al (2008) Phenological and phenotypic differences and correlations among genotypes of / Hordeum spontaneum originating from different locations in Israel. Genet Resour Crop Evol 55(7):995-005 CrossRef
    53. van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377-90 CrossRef
    54. National Research Council (1971) Selenium in nutrition. National Academy Press, Washington
    55. Brown A, Zohary D, Nevo E (1978) Association of alleles at esterase loci in wild barley / Hordeum spontaneum L. Nature 268:430-31 CrossRef
    56. Feinbrun-Dothan N (1986) Flora Palestina, Part Four—Text. Israel Acad Sciences and Humanities, Jerusalem
    57. Gutterman Y (2002) Survival strategies of annual desert plants. Adaptations of desert organisms. Springer, Berlin, 348 pp CrossRef
    58. Peleg Z, Saranga Y, Krugman T et al (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ 31:39-9
    59. Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey. Theor Appl Genet 77:421-55 CrossRef
    60. Ellis R, Foster B, Handley L et al (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9-7 CrossRef
    61. Nevo E, Chen GX (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670-85 CrossRef
    62. Distelfeld A, Korol AB, Dubcovsky J et al (2008) Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat / Gpc-B1 region. Mol Breed 22:25-8 CrossRef
    63. Dawson IK, Chalmers KJ, Waugh R et al (1993) Detection and analysis of genetic variation in / Hordeum spontaneum populations from Israel using RAPD markers. Mol Ecol 2:151-59 CrossRef
  • 作者单位:Yan Jun (1) (2)
    Wang Fang (1)
    Qin Haibo (3)
    Chen Guoxiong (4)
    Nevo Eviatar (2)
    Tzion Fahima (2)
    Cheng Jianping (1)

    1. Institute of Triticeae Crops, Guizhou University, Guiyang, 550025, China
    2. Institute of Evolution and the Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
    3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
    4. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
文摘
Wild barley (Hordeum spontaneum), the progenitor of cultivated barley, is an important genetic resource for cereal improvement. Selenium (Se) is an essential trace mineral for humans and animals with antioxidant, anticancer, antiarthropathy, and antiviral effects. In the current study, the grain Se concentration (GSeC) of 92 H. spontaneum genotypes collected from nine populations representing different habitats in Israel was investigated in the central area of Guizhou Province, China. Remarkable variations in GSeC were found between and within populations, ranging from 0 to 0.387?mg?kg? among the 92 genotypes with an average of 0.047?mg?kg?. Genotype 20_C from the Sede Boqer population had the highest GSeC, while genotype 25_1 from the Atlit population had the lowest. The mean value of GSeC in each population varied from 0.010 to 0.105?mg?kg?. The coefficient of variation for each population ranged from 12% to 163%. Significant correlations were found between GSeC and 12 ecogeographical factors out of 14 studied. Habitat soil type also significantly affected GSeC. The wild barley exhibited wider GSeC ranges and greater diversity than its cultivated counterparts. The higher Se grain concentrations found in H. spontaneum populations suggest that wild barley germplasm confer higher abilities for Se uptake and accumulation, which can be used for genetic studies of barley nutritional value and for further improvement of domesticated cereals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700