用户名: 密码: 验证码:
Genome constitution and classification using retrotransposon-based markers in the orphan crop banana
详细信息    查看全文
  • 作者:Chee How Teo (1) (2)
    Siang Hee Tan (3)
    Chai Ling Ho (1)
    Qamaruz Zaman Faridah (4)
    Yasmin Rofina Othman (5)
    John Seymour Heslop-Harrison (2)
    Ruslan Kalendar (6)
    Alan Howard Schulman (6) (7)
  • 关键词:genome constitution ; Inter ; Retrotransposon Amplified Polymorphism ; long terminal repeat ; Musa ; phylogenetic analysis ; retrotransposon
  • 刊名:Journal of Plant Biology
  • 出版年:2005
  • 出版时间:March 2005
  • 年:2005
  • 卷:48
  • 期:1
  • 页码:96-105
  • 全文大小:3219KB
  • 参考文献:1. Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Inter-retrotransposon amplified polymorphism (IRAP), and retotransposon-microsatellite amplified polymorphism (REMAP) in populations of the young allopolyploid species / Spartina angelica Hubbard (Poaceae). Mol Biol Evol 19: 1218鈥?227
    2. Boyko E, Kalendar R, Korzun V, Gill B, Schulman AH (2002) Combined mapping of / Aegilops tauschii by ret-rotransposon, microsatellite, and gene markers. Plant Mol Biol 48: 767鈥?90 CrossRef
    3. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) / Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl Acids Res 20: 3639鈥?644 CrossRef
    4. Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Ret-rotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16: 643鈥?50 CrossRef
    5. Grandbastien M-A, Spielmann A, Caboche M (1989) / Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376鈥?80 CrossRef
    6. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12: 2521鈥?528
    7. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783鈥?788 CrossRef
    8. Horry JP, Ortiz R, Arnaud E, Crouch JH, Ferris RSB, Jones DR, Mateo N, Picq C, Vuylsteke (1997) Banana and plantain. / In D Fuccillo, L Sears, P Stapleton, eds, Biodiversity in Trust. (Conservation and Use of Plane Genetic Resources in CGIAR Centres), Cambridge University, London, pp 67鈥?1
    9. Iwamoto M, Nagashima H, Nagamine T, Higo T, Higo K (1999) / p-SINE1-like intron of the / CatA catalase homologs and phylogenetic relationships among AA-genome / Oryza and related species. Theor Appl Genet 98: 853鈥?61 CrossRef
    10. Kalendar R, Grab T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98: 704鈥?11 CrossRef
    11. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley ( / Hordeum spontaneum) by / BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97: 6603鈥?607 CrossRef
    12. Kumar A, Bennetzen J (1999) Plant retrotransposons. Ann Rev Genet 33: 479鈥?32 CrossRef
    13. Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of / BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264: 325鈥?34 CrossRef
    14. Nakayashiki H, Ikeda K, Hashimota Y, Tosa Y, Mayama S (2001) Methylation is not the main force repressing the retrotransposon MAGGY in / Magnaporthe grisea. Nucl Acids Res 29: 1278鈥?284 CrossRef
    15. Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The / Ty1-copia group of retrotrans-posons in / Vicia species: Copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 205: 305鈥?15
    16. Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in / Pisum. Mol Gen Genet 263: 898鈥?07 CrossRef
    17. Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19: 711鈥?17 CrossRef
    18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406鈥?25
    19. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765鈥?68 CrossRef
    20. Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666鈥?70 CrossRef
    21. Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10: 908鈥?15 CrossRef
    22. Stover P, Simmonds NW (1987) Bananas, Ed 3. Longman, London
    23. Tatout C, Warwick S, Lenoir A, Deragon JM (1999) Sine insertions as clade markers for wild / Crucifer species. Mol Biol Evol 16: 1614鈥?621
    24. Teo CH, Tan SH, Othman YR, Schwarzacher T (2002) The cloning of Ty1-copia-like retrotransposons from 10 varieties of banana ( / Musa sp.). J Biochem Mol Biol Biophys 6: 193鈥?01 CrossRef
    25. Vicient CM, Jaaskelainen M, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125: 1283鈥?292 CrossRef
    26. Vicient CM, Schulman AH (2002) Copia-like retrotransposons in the rice genome: few and assorted. Genome Lett 1: 35鈥?7 CrossRef
    27. Voytas DF, Cummings MP, Konieczny AK, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124鈥?128 CrossRef
    28. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of / BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253: 687鈥?94 CrossRef
  • 作者单位:Chee How Teo (1) (2)
    Siang Hee Tan (3)
    Chai Ling Ho (1)
    Qamaruz Zaman Faridah (4)
    Yasmin Rofina Othman (5)
    John Seymour Heslop-Harrison (2)
    Ruslan Kalendar (6)
    Alan Howard Schulman (6) (7)

    1. Department of Biotechnology, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
    2. Department of Biology, University of Leicester, LE1 7RH, Leicester, United Kingdom
    3. Molecular Biology Department, Sime Darby Technology Centre Sdn Bhd, 2, Jalan Tandang, 46050, Petaling Jaya, Selangor, Malaysia
    4. Department of Biology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
    5. Institute of Biological Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
    6. MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, P.O. Box 56, FIN-00014, Helsinki, Finland
    7. Plant Breeding Biotechnology, MTT Agrifood Research Finland, Myllytie 10, FIN-00810, Jokioinen, Finland
文摘
We have exploited the repetitive and dispersed nature of many long terminal repeat (LTR)-retrotransposon families for characterizing genome constitutions and classifying cultivars of the genusMusa. Insertional polymorphisms of the elements were studied using seven published and two newly designed primers facing outwards from the LTRs and reverse transcriptase (RT) domain of the retrotransposon. The primers generated specific amplification patterns showing the universal applicability of this marker type. The Inter-Retrotransposon Amplified Polymorphism (IRAP) markers distinguished the A and B genomes of the banana species (Musa acuminata Col la andMusa balbisiana Colla) and between banana cultivars. The IRAP markers enabled phylogenetic analysis of 16 Malaysian banana cultivars and determination of the genome constitution of hybrid banana (AAB, ABB, AABB, and AAAB), and gave information about ancestral genotypes of the hybrids. In addition, the IRAP detected new retrotransposon insertions into the genome of tissue culture regenerants. This PCR-based IRAP assay is amenable to large-scale throughput demands in screening breeding populations and is applicable for any crop.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700