用户名: 密码: 验证码:
A new approach to modernized GPS phase-only ambiguity resolution over long baselines
详细信息    查看全文
  • 作者:Feng-Yu Chu ; Ming Yang ; Joz Wu
  • 关键词:Modernized GPS ; Phase ; only ambiguity resolution ; Ionosphere ; Long baselines
  • 刊名:Journal of Geodesy
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:90
  • 期:3
  • 页码:241-254
  • 全文大小:3,184 KB
  • 参考文献:Bossler JD, Goad CC, Bender PL (1980) Using the global positioning system (GPS) for geodetic positioning. Bulletin géodesique 54:553–563CrossRef
    Chu F-Y, Yang M (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solut 18:263–272CrossRef
    Cocard M, Bourgon S, Kamali O, Collins P (2008) A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. J Geod 82:555–564CrossRef
    Dow JM, Neilan RE, Gendt G (2005) The international GPS service: celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36:320–326CrossRef
    Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 86(3–4):191–198CrossRef
    Duan J, Bevis M, Fang P, Bock Y, Chiswell S, Businger S, Rocken C, Solheim F, Tv H, Ware R, McClusky S, Herring TA, King RW (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35:830–838CrossRef
    Euler HJ, Schaffrin B (1990) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: Proceeding of IAG symposia no. 107: kinematic systems in geodesy, surveying, and remote sensing, Alberta, pp 285–295
    Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. J Geod 82:847–862CrossRef
    Feng Y, Rizos C (2009) Network-based geometry-free three carrier ambiguity resolution and phase bias calibration. GPS Solut 13:43–56CrossRef
    Goad C, Yang M (1997) A new approach to precision airborne GPS positioning for photogrammetry. Photogramm Eng Remote Sens 63:1067–1077
    Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS-global navigation satellite systems. Springer, Vienna
    Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74:4487–4499CrossRef
    Kleusberg A, Teunissen PJG (1996) GPS for geodesy. Springer, BerlinCrossRef
    Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, New YorkCrossRef
    Leick A (2004) GPS satellite surveying, 3rd edn. Willey, New York
    Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS Solut 14:177–184CrossRef
    Li B, Verhagen S, Teunissen PJG (2014) Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases. GPS Solut 18:283–296CrossRef
    Liu G, Liao Y, Wen Y, Zhu J, Feng X (2007) Simulation and evaluation on the performance of the proposed constellation of global navigation satellite system. In: Proceeding of Asia simulation conference 2007, Seoul, pp 103–111
    Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetray events of October 29–30 “Halloween Storms”. Geophys Res Lett 32:1–4CrossRef
    Melbourne WG (1985) The case for ranging in GPS based geodetic system. In: First international symposium on position with global positioning system, Rockville, pp 373–386
    Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222CrossRef
    Nee RDJV (1992) Multipath effects on GPS code phase measurements. Navigation 39:177–190CrossRef
    Odijk D, HvD M, Song I (2000) Precise GPS positioning by applying ionospheric corrections from an active control network. GPS Solut 3:49–57CrossRef
    Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. J Surv Eng 129:165–173CrossRef
    Rafael CG, Woods RE (2002) Digital image processing. Prentice-Hall, New Jersey
    Schaer S, Gurtner W, Feltens J (1998) The ionosphere map exchange format version 1. In: IGS analysis centers workshop, Darmstadt, pp 233–247
    Tang W, Deng C, Shi C, Liu J (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solut 18:335–344CrossRef
    Teunissen PJG, Joosten P, Tiberius C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: Proceeding of the ION GPS 2002, Portland, pp 2799–2808
    Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82CrossRef
    Teunissen PJG (1997) The geometry-free GPS ambiguity search space with a weighted ionosphere. J Geod 71:370–383CrossRef
    Teunissen PJG, de Jonge PJ, Tiberius CCJM (1997) The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod 71:589–602CrossRef
    Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73:587–593CrossRef
    Teunissen PJG, Odijk D (2003) Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. J Geod 76:523–535CrossRef
    Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41:138–151CrossRef
    Verhagen S (2004) Integer ambiguity validation: an open problem? GPS Solut 8:36–43CrossRef
    Yang M, Tang C-H, Yu T-T (2000) Development and assessment of a medium-range real-time kinematic GPS algorithm using an ionospheric information filter. Earth Planets space 52:783–788CrossRef
    Zhang J, Lachapelle G (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. J Geod 75:255–266CrossRef
  • 作者单位:Feng-Yu Chu (1)
    Ming Yang (1)
    Joz Wu (2)

    1. Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
    2. Center for Space and Remote Sensing Research, National Central University, Chung Li, Taiwan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1394
文摘
With the advent of modernized GPS, triple-frequency phase measurements (L1, L2, and L5) are available for civil use. The successful ambiguity resolution of the integer ambiguities of the phase measurements will be the key to centimeter-level positioning. In order to achieve ambiguity resolution over long baselines, code measurements (pseudorange) are regularly incorporated with the phase measurements in the observation model. However, code multipath affects ambiguity resolution and thus completely eliminating the influence is an important issue. Therefore, the present study proposes an approach that uses only the phase measurements in the observation model. The proposed approach has three steps and focuses on resolving the integer ambiguities of the triple-frequency phase measurements. Simulation baseline data were processed by the proposed approach and the results show that the integer ambiguities of the phase measurements can be successfully resolved and that satellite geometry is an important factor for the phase-only ambiguity resolution performance. Real triple-frequency GPS data from currently available Block IIF satellites were also processed to demonstrate the feasibility of the proposed approach. Keywords Modernized GPS Phase-only ambiguity resolution Ionosphere Long baselines

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700