用户名: 密码: 验证码:
Anti-EGFR Agents: Current Status, Forecasts and Future Directions
详细信息    查看全文
  • 作者:Radoslaw Kwapiszewski ; Sebastian D. Pawlak ; Karolina Adamkiewicz
  • 刊名:Targeted Oncology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:11
  • 期:6
  • 页码:739-752
  • 全文大小:
  • 刊物主题:Oncology; Biomedicine, general;
  • 出版者:Springer International Publishing
  • ISSN:1776-260X
  • 卷排序:11
文摘
The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.References1.The Official Web Site of the Nobel Prize. The Nobel Prize in Physiology or Medicine 1986. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1986/.2.Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.CrossRefPubMedGoogle Scholar3.Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003;284:99–110.CrossRefPubMedGoogle Scholar4.Kamath S, Buolamwini JK. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev. 2006;26:569–94.CrossRefPubMedGoogle Scholar5.Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer. 2003;10:1–21.CrossRefPubMedGoogle Scholar6.Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34:8690–707.CrossRefPubMedGoogle Scholar7.Mamot C, Rochlitz C. Targeting the epidermal growth factor receptor (EGFR) – a new therapeutic option in oncology? Swiss Med Wkly. 2006;136:4–12.PubMedGoogle Scholar8.Nair P. Epidermal growth factor receptor family and its role in cancer progression. Curr Sci India. 2005;88:890–8.Google Scholar9.Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol. 2007;39:1416–31.CrossRefPubMedGoogle Scholar10.Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci. 2014;35:41–50.CrossRefPubMedGoogle Scholar11.Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 2006;12:6494–501.CrossRefPubMedGoogle Scholar12.Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18:221–3.CrossRefPubMedGoogle Scholar13.Arena S, Bellosillo B, Siravegna G, Martinez A, Canadas I, Lazzari L, et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin Cancer Res. 2015;21:2157–66.CrossRefPubMedGoogle Scholar14.Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J Neurovirol. 1998;4:148–58.CrossRefPubMedGoogle Scholar15.Sogabe S, Kawakita Y, Igaki S, Iwata H, Miki H, Cary DR, et al. Structure-based approach for the discovery of pyrrolo[3,2-d]pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med Chem Lett. 2012;4:201–5.CrossRefPubMedPubMedCentralGoogle Scholar16.Wang S, Cang S, Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol. 2016;9:34.CrossRefPubMedPubMedCentralGoogle Scholar17.Goyal S, Jamal S, Shanker A, Grover A. Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships. BMC Genomics. 2015;16(5):S8.CrossRefPubMedPubMedCentralGoogle Scholar18.Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2014;6:a020768.CrossRefPubMedPubMedCentralGoogle Scholar19.Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003;11:507–17.CrossRefPubMedGoogle Scholar20.Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta. 1987;916:220–6.CrossRefPubMedGoogle Scholar21.Ocana A, Pandiella A. Targeting HER receptors in cancer. Curr Pharm Des. 2013;19:808–17.CrossRefPubMedGoogle Scholar22.Patel TB, Bertics PJ. Methods in molecular biology, vol. 327: epidermal growth factor: methods and protocols. Totowa, New Jersey: Humana Press Inc; 2006.Google Scholar23.Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.CrossRefPubMedPubMedCentralGoogle Scholar24.Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell. 2002;110:763–73.CrossRefPubMedGoogle Scholar25.Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110:775–87.CrossRefPubMedGoogle Scholar26.Ward CW, Garrett TP, McKern NM, Lou M, Cosgrove LJ, Sparrow LG, et al. The three dimensional structure of the type I insulin-like growth factor receptor. Mol Pathol. 2001;54:125–32.CrossRefPubMedPubMedCentralGoogle Scholar27.Dawson JP, Berger MB, Lin CC, Schlessinger J, Lemmon MA, Ferguson KM. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol. 2005;25:7734–42.CrossRefPubMedPubMedCentralGoogle Scholar28.Lemmon MA, Bu Z, Ladbury JE, Zhou M, Pinchasi D, Lax I, et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 1997;16:281–94.CrossRefPubMedPubMedCentralGoogle Scholar29.Lax I, Mitra AK, Ravera C, Hurwitz DR, Rubinstein M, Ullrich A, et al. Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain. J Biol Chem. 1991;266:13828–33.PubMedGoogle Scholar30.Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125:1137–49.CrossRefPubMedGoogle Scholar31.Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995;376:313–20.CrossRefPubMedGoogle Scholar32.de Bono JS, Rowinsky EK. The ErbB receptor family: a therapeutic target for cancer. Trends Mol Med. 2002;8:S19–26.CrossRefPubMedGoogle Scholar33.Wu DG, Wang LH, Sato GH, West KA, Harris WR, Crabb JW, et al. Human epidermal growth factor (EGF) receptor sequence recognized by EGF competitive monoclonal antibodies. Evidence for the localization of the EGF-binding site. J Biol Chem. 1989;264:17469–75.PubMedGoogle Scholar34.Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7:301–11.CrossRefPubMedGoogle Scholar35.Voigt M, Braig F, Göthel M, Schulte A, Lamszus K, Bokemeyer C, et al. Functional dissection of the epidermal growth factor receptor epitopes targeted by panitumumab and cetuximab. Neoplasia. 2012;14:1023–31.CrossRefPubMedPubMedCentralGoogle Scholar36.Mateo C, Moreno E, Amour K, Lombardero J, Harris W, Pérez R. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology. 1997;3:71–81.CrossRefPubMedGoogle Scholar37.Ramakrishnan MS, Eswaraiah A, Crombet T, Piedra P, Saurez G, Iyer H, et al. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs. 2009;1:41–8.CrossRefPubMedPubMedCentralGoogle Scholar38.Kamat V, Donaldson JM, Kari C, Quadros MR, Lelkes PI, Chaiken I, et al. Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425. Cancer Biol Ther. 2008;7:726–33.CrossRefPubMedGoogle Scholar39.Schmiedel J, Blaukat A, Li S, Knöchel T, Ferguson KM. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell. 2008;13:365–73.CrossRefPubMedPubMedCentralGoogle Scholar40.Kollmannsberger C, Schittenhelm M, Honecker F, Tillner J, Weber D, Oechsle K, et al. A phase I study of the humanized monoclonal anti-epidermal growth factor receptor (EGFR) antibody EMD 72000 (matuzumab) in combination with paclitaxel in patients with EGFR-positive advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2006;17:1007–13.CrossRefPubMedGoogle Scholar41.van Bueren JJ L, Bleeker WK, Brännström A, von Euler A, Jansson M, Peipp M, et al. The antibody zalutumumab inhibits epidermal growth factor receptor signaling by limiting intra- and intermolecular flexibility. Proc Natl Acad Sci U S A. 2008;105:6109–14.CrossRefGoogle Scholar42.Ahsan A. Mechanisms of resistance to EGFR tyrosine kinase inhibitors and therapeutic approaches: an update. Adv Exp Med Biol. 2016;893:137–53.CrossRefPubMedGoogle Scholar43.Steward EL, Tan SZ, Liu G, Tsao M-S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations – a review. Transl Lung Cancer Res. 2015;4:67–81.Google Scholar44.Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemis EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets. 2009;13:339–62.CrossRefPubMedPubMedCentralGoogle Scholar45.Jiang N, Saba NF, Chen ZG. Advances in targeting HER3 as an anticancer therapy. Chemother Res Pract. 2012;2012:817304.PubMedPubMedCentralGoogle Scholar46.Alaoui-Jamali MA, Morand GB, da Silva SD. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics. Front Genet. 2015;6:17.CrossRefPubMedPubMedCentralGoogle Scholar47.Liao B-C, Lin C-C, Yang JC-H. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol. 2015;27:94–101.CrossRefPubMedGoogle Scholar48.U.S. Food and Drug Administration webpage. FDA Approves Erlotinib, 2013. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm352317.htm/ 49.Kelly K, Chansky K, Gaspar LE, Albain KS, Jett J, Ung YC, et al. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J Clin Oncol. 2008;26:2450–6.CrossRefPubMedGoogle Scholar50.Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.CrossRefPubMedGoogle Scholar51.Song X, Fan P-D, Bantikassegn A, Guha U, Threadgill DW, Varmus H. ERBB3 independent activation of the PI3K pathway in EGFR mutant lung adenocarcinomas. Cancer Res. 2015;75:1035–45.CrossRefPubMedPubMedCentralGoogle Scholar52.Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.CrossRefPubMedGoogle Scholar53.Wissner A, Mansour TS. The development of HKI-272 and related compounds for the treatment of cancer. Arch Pharm (Weinheim). 2008;341:465–77.CrossRefGoogle Scholar54.Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577–89.CrossRefPubMedGoogle Scholar55.AstraZeneca webpage. Tagrisso™ (osimertinib) approved in Japan for patients with EGFR T790M mutation-positive metastatic non-small cell lung cancer, 2016. https://www.astrazeneca.com/media-centre/press-releases/2016/tagrisso-approved-in-japan-for-patients-with-egfr-t790m-mutation-positive-metastatic-non-small-cell-lung-cancer-29032016.html.56.Lung Cancer Canada webpage. News Release: TAGRISSO™ (osimertinib) approved by Health Canada as treatment for patients with locally advanced or metastatic EGFR T790M mutation-positive non-small cell lung cancer, 2016. http://www.lungcancercanada.ca/LungCancerCanada/media/Documents/News/Tagrisso-NOCc-News-Release-_FINAL_July-8-2016.pdf.57.Chu CT, Sada YH, Kim ES. Vandetanib for the treatment of lung cancer. Expert Opin Investig Drugs. 2012;21:1211–21.CrossRefPubMedGoogle Scholar58.Sugawara S, Oizumi S, Minato K, Harada T, Inoue A, Fujita Y, et al. Randomized phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations: NEJ005/TCOG0902. Ann Oncol. 2015;26:888–94.CrossRefPubMedGoogle Scholar59.Seto T, Kato T, Nishio M, Goto K, Atagi S, Hosomi Y, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014;15:1236–44.CrossRefPubMedGoogle Scholar60.F. Hoffmann-La Roche Ltd webpage. Media release: Roche receives EU approval of Avastin in combination with Tarceva for patients with a specific type of advanced lung cancer, 8 Jun 2016. http://www.roche.com/media/store/releases/med-cor-2016-06-08.htm.61.Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol. 2015;5:5.CrossRefPubMedPubMedCentralGoogle Scholar62.Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets. 2012;12:197–209.CrossRefPubMedPubMedCentralGoogle Scholar63.Mass RD. The HER, receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys. 2004;58:932–40.CrossRefPubMedGoogle Scholar64.National Cancer Institute webpage. http://www.cancer.gov/.65.GlobalData Healthcare service. https://healthcare.globaldata.com/.66.Medtrack service. https://www.medtrack.com/.67.Service of the U.S. National Institutes of Health: ClinicalTrials.gov. https://clinicaltrials.gov/.68.Johns TG, Adams TE, Cochran JR, Hall NE, Hoyne PA, Olsen MJ, et al. Identification of the epitope for the epidermal growth factor receptor-specific monoclonal antibody 806 reveals that it preferentially recognizes an untethered form of the receptor. J Biol Chem. 2004;279:30375–84.CrossRefPubMedGoogle Scholar69.Sivasubramanian A, Chao G, Pressler HM, Wittrup KD, Gray JJ. Structural model of the mAb 806-EGFR complex using computational docking followed by computational and experimental mutagenesis. Structure. 2006;14:401–14.CrossRefPubMedGoogle Scholar70.Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci U S A. 2007;104:4071–6.CrossRefPubMedPubMedCentralGoogle Scholar71.Reilly EB, Phillips AC, Buchanan FG, Kingsbury G, Zhang Y, Meulbroek JA, et al. Characterization of ABT-806, a humanized tumor-specific anti-EGFR monoclonal antibody. Mol Cancer Ther. 2015;14:1141–51.CrossRefPubMedGoogle Scholar72.Li C, Huang S, Armstrong EA, Francis DM, Werner LR, Sliwkowski MX, et al. Antitumor effects of MEHD7945A, a dual-specific antibody against EGFR and HER3, in combination with radiation in lung and head and neck cancers. Mol Cancer Ther. 2015;14(9):2049–59.CrossRefPubMedGoogle Scholar73.Service of the U.S. National Institutes of Health: ClinicalTrials.gov. A study of MEHD7945A versus cetuximab in patients with recurrent/metastatic squamous cell carcinoma of the head and neck, 2012. https://clinicaltrials.gov/ct2/show/NCT01577173.74.Sachdev E, Gong J, Rimel B, Mita M. Adnectin-targeted inhibitors: rationale and results. Curr Oncol Rep. 2015;17:35.CrossRefPubMedGoogle Scholar75.Arena S, Siravegna G, Mussolin B, Kearns JD, Wolf BB, Misale S, et al. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med. 2016;8:324ra14.CrossRefPubMedGoogle Scholar76.Gerdes CA, Nicolini VG, Herter S, van Puijenbroek E, Lang S, Roemmele M, et al. GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin Cancer Res. 2013;19:1126–38.CrossRefPubMedGoogle Scholar77.Fury MG, Lipton A, Smith KM, Winston CB, Pfister DG. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol Immunother. 2008;57:155–63.CrossRefPubMedGoogle Scholar78.Muyldermans S. Single domain camel antibodies: current status. J Biotechnol. 2001;74:277–302.PubMedGoogle Scholar79.Nygren PA. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J. 2008;275:2668–76.CrossRefPubMedGoogle Scholar80.Ding L, Tian C, Feng S, Fida G, Zhang C, Ma Y, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics. 2015;5:378–98.CrossRefPubMedPubMedCentralGoogle Scholar81.Tian R, Li Y, Gao M. Shikonin causes cell-cycle arrest and induces apoptosis by regulating the EGFR-NF-kB signalling pathway in human epidermoid carcinoma A431 cells. Biosci Rep. 2015;35:e00189.CrossRefPubMedPubMedCentralGoogle Scholar82.Calonghi N, Pagnotta E, Parolin C, Mangano C, Bolognesi ML, Melchiorre C, et al. A new EGFR inhibitor induces apoptosis in colon cancer cells. Biochem Biophys Res Commun. 2007;354:409–13.CrossRefPubMedGoogle Scholar83.Azizi E, Namazi A, Haririan I, Fouladdel S, Khoshayand MR, Shotorbani PY, et al. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector. Int J Nanomedicine. 2010;5:455–61.PubMedPubMedCentralGoogle Scholar84.Lu Y, Liu L, Wang Y, Li F, Zhang J, Ye M, et al. siRNA delivered by EGFR-specific scFv sensitizes EGFR-TKI-resistant human lung cancer cells. Biomaterials. 2016;76:196–207.CrossRefPubMedGoogle ScholarCopyright information© Springer International Publishing Switzerland 2016Authors and AffiliationsRadoslaw Kwapiszewski1Email authorView author's OrcID profileSebastian D. Pawlak1Karolina Adamkiewicz21.Drug Discovery DepartmentAdamed GroupCzosnowPoland2.King’s College London GKT School of Medical EducationLondonUK About this article CrossMark Publisher Name Springer International Publishing Print ISSN 1776-2596 Online ISSN 1776-260X About this journal Reprints and Permissions Co-published with

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700