用户名: 密码: 验证码:
Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study
详细信息    查看全文
  • 作者:Feng-Bin Liu 刘峰政/a> ; Jing-Lin Li 李景朿/a> ; Wen-Bin Chen 陈文廿/a> ; Yan Cui 崔岩…
  • 关键词:active ions ; diamond surface ; adsorption ; electronic structure
  • 刊名:Frontiers of Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 全文大小:297 KB
  • 参考文献:1.M. I. Landstrass and K. V. Ravi, Hydrogen passivation of electrically active defects in diamond, Appl. Phys. Lett. 55, 1391 (1989)ADS CrossRef
    2.B. Rezek, D. Shin, H. Watanabe, and C. E. Nebel, Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor, Sensor Actuat. B-Chem. 122, 596 (2007)CrossRef
    3.C. Schreyvogel, M. Wolfer, H. Kato, M. Schreck, and C. E. Nebel, Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond, Sci. Rep. 4, 3634 (2014)ADS CrossRef
    4.H. Kawarada, H. Sasaki, and A. Sato, Scanning-tunnelingmicroscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure, Phys. Rev. B 52, 11351 (1995)ADS CrossRef
    5.K. Hayashi, S. Yamanaka, and H. Watanabe, Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films, J. Appl. Phys. 81, 744 (1997)ADS CrossRef
    6.F. B. Liu, J. D. Wang, D. R. Chen, M. Zhao, and G. P. He, The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption, Acta Phys. Sin. 59, 6556 (2010) (in Chinese)
    7.E. B. Lombardi, A. Mainwood, and K. Osuch, Interaction of hydrogen with boron, phosphorus, and sulfur in diamond, Phys. Rev. B 70, 205201 (2004)ADS CrossRef
    8.K. Bobrov, A. J. Mayne, A. Hoffman, and G. Dujardin, Atomic-scale desorption of hydrogen from hydrogenated diamond surfaces using the STM, Surf. Sci. 528, 138 (2003)ADS CrossRef
    9.F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85, 3472 (2000)ADS CrossRef
    10.J. P. Goss, B. Hourahine, R. Jones, M. I. Heggie, and P. R. Briddon, p-type surface doping of diamond: a first-principles study, J. Phys.: Condens. Matter 13, 8973 (2001)ADS
    11.M. M. Hassan and K. Larsson, Effect of surface termination on diamond (100) surface electrochemistry, J. Phys. Chem. C 118, 22995 (2014)CrossRef
    12.V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318, 1424 (2007)ADS CrossRef
    13.Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9, 200 (2014)CrossRef
    14.Z. J. Ding, Y. Jiao, and S. Meng, Quantum simulation of molecular interaction and dynamics at surfaces, Front. Phys. 6, 294 (2011)CrossRef
    15.J. Furthmüller, J. Hafner, and G. Kresse, Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces, Phys. Rev. B 53, 7334 (1996)ADS CrossRef
    16.K. Bobrov, A. Mayne, G. Comtet, G. Dujardin, L. Hellner, and A. Hoffman, Atomic-scale visualization and surface electronic structure of the hydrogenated diamond C (100)- (2×1): H surface, Phys. Rev. B 68, 195416 (2003)ADS CrossRef
    17.M. J. Rutter and J. Robertson, Ab initio calculation of electron affinities of diamond surfaces, Phys. Rev. B 57, 9241 (1998)ADS CrossRef
    18.F. Maier, J. Risten, and L. Ley, Electron affinity of plasmahydrogenated and chemically oxidized diamond (100) surfaces, Phys. Rev. B 64, 165411 (2001)ADS CrossRef
    19.Y. Takagi, K. Shiraishi, M. Kasu, and H. Sato, Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule, Surf. Sci. 609, 203 (2013)ADS CrossRef
    20.H. Sato and M. Kasu, Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption, Diamond Relat. Mater. 24, 99 (2012)CrossRef
    21.K. G. Girija, J. Nuwad, and R. K. Vatsa, Hydrogenated diamond as room temperature H2S sensor, Diamond Relat. Mater. 40, 38 (2013)ADS CrossRef
    22.S. Beer, A. Helwig, G. Müller, J. Garrido, and M. Stutzmann, Water adsorbate mediated accumulation gas sensing at hydrogenated diamond surfaces, Sens. Actuat. B 181, 894 (2013)CrossRef
    23.A. Helwig, G. Müller, J. A. Garrido, and M. Eickhoff, Gas sensing properties of hydrogen-terminated diamond, Sens. Actuat. B 133, 156 (2008)CrossRef
    24.M. Kubovic, M. Kasu, and H. Kageshima, Electronic and surface properties of H-terminated diamond surface affected by NO2 gas, Appl. Phys. Lett. 96, 052101 (2010)ADS CrossRef
  • 作者单位:Feng-Bin Liu 刘峰斌 (1)
    Jing-Lin Li 李景林 (2)
    Wen-Bin Chen 陈文彬 (1)
    Yan Cui 崔岩 (1)
    Zhi-Wei Jiao 焦志伟 (1)
    Hong-Juan Yan 阎红娟 (1)
    Min Qu 屈敏 (1)
    Jie-Jian Di 狄杰建 (1)

    1. College of Mechanical and Material Engineering, North China University of Technology, Beijing, 100144, China
    2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
文摘
To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO 3 - , H3O+, and OH− ions physisorbed on hydrogenated diamond (100) surfaces were constructed. Density functional theory was used to calculate the geometries, adsorption energies, and partial density of states. The results showed that the geometries of the hydrogenated diamond (100) surfaces all changed to different degrees after ion adsorption. Among them, the H3O+ ion affected the geometry of the hydrogenated diamond (100) surfaces the most. This is well consistent with the results of the calculated adsorption energies, which indicated that a strong electrostatic attraction occurs between the hydrogenated diamond (100) surface and H3O+ ions. In addition, electrons transfer significantly from the hydrogenated diamond (100) surface to the adsorbed H3O+ ion, which induces a downward shift in the HOMO and LUMO energy levels of the H3O+ ion. However, for active ions like OH− and HCO 3 - , no dramatic change appears for the electronic structures of the adsorbed ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700