用户名: 密码: 验证码:
Electronic structures of the oxygenated diamond (100) surfaces
详细信息    查看全文
  • 作者:Fengbin Liu (1)
    Jiadao Wang (1)
    Bing Liu (2)
    Xuemin Li (1)
    Darong Chen (1)
  • 关键词:first principles ; oxygenation ; diamond (100) surface ; electronic structure
  • 刊名:Chinese Science Bulletin
  • 出版年:2006
  • 出版时间:October 2006
  • 年:2006
  • 卷:51
  • 期:20
  • 页码:2437-2443
  • 全文大小:3051KB
  • 参考文献:1. Kalish R, Reznik A, Uzan-Saguy C, et al. Is sulfer a donor in diamond? Appl Phys Lett, 2000, 76(6): 757-59 CrossRef
    2. Rezek B, Nebel C E. Kelvin force microscopy on diamond surfaces and devices. Diamond Rel Mater, 2005, 14(3-): 466-69 CrossRef
    3. Saito T, Park K, Hirama K, et al. Fabrication of diamond MISFET with micron-sized gate length on boron-doped (111) surface. Diamond Rel Mater, 2005, 14(11-2): 2043-046 CrossRef
    4. Wolter S D, Stoner B R, Glass J T, et al. Textured growth of diamond on silicon via / in situ carburization and bias-enhanced nucleation. Appl Phys Lett, 1993, 62(11): 1215-217 CrossRef
    5. Chu C J, D’Evelyn M P, Hauge R H, et al. Mechanism of diamond growth by chemical vapor deposition on diamond (100), (111), and (110) surfaces: Carbon-13 studies. J Appl Phys, 1991, 70(3): 1695-705 CrossRef
    6. Hamza A V, Kubiak G D, Stulen R H. Hydrogen chemisorption and the structure of the diamond C(100)-2×1 surface. Surf Sci, 1990, 237(1-): 35-2 CrossRef
    7. Phersson P E, Mercer T W. Oxidation of the hydrogenated diamond (100) surface. Surf Sci, 2000, 460(1-): 49-6 CrossRef
    8. Hayashi K, Yamanaka S, Watanabe H, et al. Investigation of the effect of hydrogen on electronical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J Appl Phys, 1997, 81(2): 744-53 CrossRef
    9. Yagi L, Notsu H, Kondo T, et al. Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J Electroanal Chem, 1999, 473(1-): 173-78 CrossRef
    10. Rutter M J, Robertson J. / Ab initio calculation of electron affinities of diamond surfaces. Phys Rev B, 1998, 57(15): 9241-245 CrossRef
    11. Maier F, Ristein J, Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys Rev B, 2001, 64(16): 165411-1-65411-7 CrossRef
    12. Yamanaka S, Ishikawa K, Mizuochi N, et al. Structural change in diamond by hydrogen plasma treatment at room temperature. Diamond Rel Mater, 2005, 14(11-2): 1939-942
    13. Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond. Phys Rev Lett, 2000, 85(16): 3472-475 CrossRef
    14. Nebel C E, Rezek B, Shin D, et al. Electronic properties of H-terminated diamond in electrolyte solutions. J Appl Phys, 2006, 99(3): 033711-1-33711-4 CrossRef
    15. Furthmüller J, Hafner J, Kresse G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Phys Rev B, 1996, 53(11): 7334-351 CrossRef
    16. Davidson B N, Pickett W E. Tight-binding study of hydrogen on the C(111), C(100), and C(110) diamond surfaces. Phys Rev B, 1994, 49(16): 11253-1267 CrossRef
    17. Dai Y, Yan C X, Li A Y, et al. Effects of hydrogen on electronic properties of doped diamond. Carbon, 2005, 43(5): 1009-014 CrossRef
    18. Yu Y, Gu C Z, Xu L F, et al. / Ab initio structural characterization of a hydrogen-covered diamond (001) surface. Phys Rev B, 2004, 70(12): 125423-1-25423-6
    19. Takeuchi D, Ri S-G, Kato H, et al. Total photoyield experiments on hydrogen terminated n-type diamond. Diamond Rel Mater, 2005, 14(11-2): 2019-022 CrossRef
    20. Ripalda J M, Gale J D, Jones T S, et al. Hydrogen-bridge bonding on semiconductor surfaces: Density-functional calculations. Phys Rev B, 2004, 70(24): 245314-1-45314-4 CrossRef
    21. Hoffman A, Lafosse A, Azria R. Sub-bandgap photoenhancement of electron emission and discharging of hydrogenated and hydrogen-free diamond surfaces. Phys Rev B, 2006, 73(8): 085423-1-85423-6 CrossRef
    22. Hossain M Z, Kubo T, Aruga T, et al. Chemisorbed states of atomic oxygen and its replacement by atomic hydrogen on the diamond (100)-(2×1) surface. Surf Sci, 1999, 436(1-): 63-1 CrossRef
    23. Pehrsson P E, Mercer T W. Oxidation of heated diamond C(100):H surfaces. Surf Sci, 2000, 460(1-): 74-0 CrossRef
    24. Sque S J, Jones R, Briddon P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys Rev B, 2006, 73(8): 085313-1-85313-14 CrossRef
    25. Loh K P, Xie X N, Lim Y H, et al. Surface oxygenation studies on (100)-oriented diamond using an atom beam source and local anodic oxidation. Surf Sci, 2002, 505: 93-14 CrossRef
    26. Teter M P, Payne M C, Allan D C. Solution of schr?dinger’s equation for large systems. Phys Rev B, 1989, 40(18): 12255-2263 CrossRef
    27. Tamura H, Zhou H, Sugisako K, et al. Periodic density-functional study on oxidation of diamond (100) surfaces. Phys Rev B, 2000, 61(16): 11025-1033 CrossRef
    28. Su C, Lin J-C. Thermal desorption of hydrogen from the diamond C(100) surface. Surf Sci, 1998, 406(1-): 149-66 CrossRef
  • 作者单位:Fengbin Liu (1)
    Jiadao Wang (1)
    Bing Liu (2)
    Xuemin Li (1)
    Darong Chen (1)

    1. State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
    2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
  • ISSN:1861-9541
文摘
By means of first principles method on the basis of density functional theory (DFT), the equilibrium geometries and density of states (DOS) of the two oxygenated diamond (100) surfaces, bridging model and on-top model are calculated. The results indicate that there are no surface states located in the band gap of the bridging model of oxygenated diamond (100) surface, and the occupied surface states in the valence band are attributed to the non-bonded O 2p orbital, O 2p and C 2p bonding orbitals, and C 2p and H 1s bonding orbitals. By contrast, for the on-top model of oxygenated diamond (100) surface, the unoccupied surface states exist in the band gap, which originate from non-bonded C 2p and O 2p orbitals. In addition, the occupied surface states in the valence band are induced by non-bonded O 2p orbital and the C=O π bond.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700