用户名: 密码: 验证码:
Phosphorylation of JNK Increases in the Cortex of Rat Subjected to Diabetic Cerebral Ischemia
详细信息    查看全文
  • 作者:Yi Ma ; Shihui Sun ; Jingwen Zhang ; Zhirong Chen ; Fengying Guo
  • 关键词:Diabetes ; Cerebral ischemia ; Reperfusion ; c ; Jun N ; terminal kinase ; Stroke
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:41
  • 期:4
  • 页码:787-794
  • 全文大小:1,195 KB
  • 参考文献:1.Wang JY, Shen J, Gao Q, Ye ZG, Yang SY, Liang HW, Bruce IC, Luo BY, Xia Q (2008) Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39(3):983–990CrossRef PubMed
    2.Li ZG, Britton M, Sima AA, Dunbar JC (2004) Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 76(3):249–262CrossRef PubMed
    3.Dijkhuizen RM, Knollema S, van der Worp HB, Ter Horst GJ, De Wildt DJ, van der Sprenkel JWB, Tulleken KA, Nicolay K (1998) Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke 29(3):695–704CrossRef PubMed
    4.Sweetnam D, Holmes A, Tennant KA, Zamani A, Walle M, Jones P, Wong C, Brown CE (2012) Diabetes impairs cortical plasticity and functional recovery following ischemic stroke. J Neurosci 32(15):5132–5143CrossRef PubMed
    5.Banerjee C, Moon YP, Paik MC, Rundek T, Mora-McLaughlin C, Vieira JR, Sacco RL, Elkind MS (2012) Duration of diabetes and risk of ischemic stroke: the Northern Manhattan study. Stroke 43(5):1212–1217CrossRef PubMed PubMedCentral
    6.Muranyi M, Ding C, He Q, Lin Y, Li PA (2006) Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes 55(2):349–355CrossRef PubMed
    7.Zhang JZ, Jing L, Ma Y, Guo FY, Chang Y, Li PA (2010) Monosialotetrahexosy-1 ganglioside attenuates diabetes-enhanced brain damage after transient forebrain ischemia and suppresses phosphorylation of ERK1/2 in the rat brain. Brain Res 1344:200–208CrossRef PubMed PubMedCentral
    8.Alvarez-Sabin J, Molina CA, Montaner J, Arenillas JF, Huertas R, Ribo M, Codina A, Quintana M (2003) Effects of admission hyperglycemia on stroke outcome in reperfused tissue plasminogen activator-treated patients. Stroke 34(5):1235–1241CrossRef PubMed
    9.Li PA, Shuaib A, Miyashita H, He QP, Siesjo BK, Warner DS (2000) Hyperglycemia enhances extracellular glutamate accumulation in rats subjected to forebrain ischemia. Stroke 31(1):183–192CrossRef PubMed
    10.Abate C, Luk D, Curran T (1991) Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains. Mol Cell Biol 11(7):3624–3632CrossRef PubMed PubMedCentral
    11.Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7(11):2135–2148CrossRef PubMed
    12.Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252CrossRef PubMed
    13.Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15(1):36–42CrossRef PubMed
    14.Kamada H, Nito C, Endo H, Chan PH (2007) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 27(3):521–533CrossRef PubMed PubMedCentral
    15.Farrokhnia N, Roos MW, Terent A, Lennmyr F (2005) Differential early mitogen-activated protein kinase activation in hyperglycemic ischemic brain injury in the rat. Eur J Clin Investig 35(7):457–463CrossRef
    16.Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH (2000) Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74(4):1587–1595CrossRef PubMed
    17.Kim CG, Choi BH, Son SW, Yi SJ, Shin SY, Lee YH (2007) Tamoxifen-induced activation of p21Waf1/Cip1 gene transcription is mediated by early growth response-1 protein through the JNK and p38 MAP kinase/Elk-1 cascades in MDA-MB-361 breast carcinoma cells. Cell Signal 19(6):1290–1300CrossRef PubMed
    18.Min BW, Kim CG, Ko J, Lim Y, Lee YH, Shin SY (2008) Transcription of the protein kinase C-delta gene is activated by JNK through c-Jun and ATF2 in response to the anticancer agent doxorubicin. Exp Mol Med 40(6):699–708CrossRef PubMed PubMedCentral
    19.Pu H, Wang X, Su L, Ma C, Zhang Y, Zhang L, Chen X, Li X, Wang H, Liu X, Zhang J (2015) Heroin activates ATF3 and CytC via c-Jun N-terminal kinase pathways to mediate neuronal apoptosis. Med Sci Monit Basic Res 21:53–62CrossRef PubMed PubMedCentral
    20.Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA 100(25):15184–15189CrossRef PubMed PubMedCentral
    21.Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15(5):285–299CrossRef PubMed
    22.Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40(1):85–89CrossRef PubMed
    23.Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336
    24.Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461
    25.Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9(3):343–353
    26.Su J, Zhou H, Tao Y, Guo J, Guo Z, Zhang S, Zhang Y, Huang Y, Tang Y, Dong Q, Hu R (2015) G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling. PLoS ONE 10(4):e0120707CrossRef PubMed PubMedCentral
    27.Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852(2):232–242CrossRef PubMed PubMedCentral
    28.Raghubir R, Nakka VP, Mehta SL (2011) Endoplasmic reticulum stress in brain damage. Methods Enzymol 489:259–275CrossRef PubMed
    29.Fan ZZ, Cai HB, Ge ZM, Wang LQ, Zhang XD, Li L, Zhai XB (2015) The efficacy and safety of granulocyte colony-stimulating factor for patients with stroke. J Stroke Cerebrovasc Dis 24(8):1701–1708CrossRef PubMed
    30.Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. Transl Med 17(7):97CrossRef
    31.Fu Y, Liu Q, Anrather J, Shi FD (2015) Immune interventions in stroke. Nat Rev Neurol 11(9):524–535CrossRef PubMed
    32.Li X, Marani M, Mannucci R, Kinsey B, Andriani F, Nicoletti I, Denner L, Marcelli M (2001) Overexpression of BCL-X(L) underlies the molecular basis for resistance to staurosporine-induced apoptosis in PC-3 cells. Cancer Res 61(4):1699–1706PubMed
    33.Moon HE, Byun K, Park HW, Kim JH, Hur J, Park JS, Jun JK, Kim HS, Paek SL, Kim IK, Hwang JH, Kim JW, Kim DG, Sung YC, Koh GY, Song CW, Lee B, Paek SH (2015) COMP-Ang1 potentiates EPC treatment of ischemic brain injury by enhancing angiogenesis through activating AKT-mTOR pathway and promoting vascular migration through activating Tie2-FAK pathway. Exp Neurobiol 24(1):55–70CrossRef PubMed PubMedCentral
    34.Kondo F, Kondo Y, Makino H, Ogawa N (2000) Delayed neuronal death in hippocampal CA1 pyramidal neurons after forebrain ischemia in hyperglycemic gerbils: amelioration by indomethacin. Brain Res 853(1):93–98CrossRef PubMed
    35.Park S, Kang S, Kim DS, Shin BK, Moon NR, Daily JW 3rd (2014) Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and beta-cell survival in gerbils. Free Radic Res 48(8):864–874CrossRef PubMed
    36.Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A (2014) Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 5(4):442–453CrossRef PubMed PubMedCentral
    37.Weil ZM (2012) Ischemia-induced hyperglycemia: consequences, neuroendocrine regulation, and a role for RAGE. Horm Behav 62(3):280–285CrossRef PubMed
    38.Haratz S, Tanne D (2011) Diabetes, hyperglycemia and the management of cerebrovascular disease. Curr Opin Neurol 24(1):81–88CrossRef PubMed
    39.Clark ME, Payton JE, Pittiglio LI (2014) Acute ischemic stroke and hyperglycemia. Crit Care Nurs Q 37(2):182–187CrossRef PubMed
    40.Rehni AK, Nautiyal N, Perez-Pinzon MA, Dave KR (2015) Hyperglycemia hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics. Metab Brain Dis 30(2):437–447CrossRef PubMed PubMedCentral
    41.Li WA, Moore-Langston S, Chakraborty T, Rafols JA, Conti AC, Ding Y (2013) Hyperglycemia in stroke and possible treatments. Neurol Res 35(5):479–491CrossRef PubMed
  • 作者单位:Yi Ma (1)
    Shihui Sun (2)
    Jingwen Zhang (3)
    Zhirong Chen (4)
    Fengying Guo (1)
    Yanhui Du (2)
    Jianzhong Zhang (1)

    1. Department of Pathology, and Ningxia Key Lab of Craniocerebral Disease, Ningxia Medical University, Yinchuan, 750004, China
    2. Department of Neurology, General Hospital, Ningxia Medical University, Yinchuan, 750004, China
    3. Department of Biology and Genetics, Ningxia Medical University, Yinchuan, 750004, China
    4. Department of Orthopedics, General Hospital, Ningxia Medical University, Yinchuan, 750004, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Previous studies have demonstrated that the c-Jun N-terminal kinase (JNK) pathway plays an important role in inducing neuronal apoptosis following cerebral ischemic injury. JNK signaling pathway in activated during cerebral ischemic injury. It participates in ischemia-induced neuronal apoptosis. However, whether JNK signaling is involved in the process of neuronal apoptosis of diabetes-induced cerebral ischemia is largely unknown. This study was undertaken to evaluate the influence of cerebral ischemia–reperfusion injury on phosphorylation of JNK in diabetic rats. Twenty-four adult streptozotocin induced diabetic and 24 adult non-diabetic rats were randomly subjected to 15 min of forebrain ischemia followed by reperfusion for 0, 1, 3, and 6 h. Sixteen sham-operated diabetic and non-diabetic rats were used as controls. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Protein expression of phospho-JNK was examined by immunohistochemistry and Western blot. The numbers of TUNEL-positive cells and phospho-JNK protein expression in the cerebral cortices after 1, 3 and 6 h reperfusion was significantly higher in diabetic rats compared to non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). Western blot analysis showed significantly higher phospho-JNK protein expression in the cerebral cortices of the diabetic rats after 1 and 3 h reperfusion than that was presented in non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). These findings suggest that increased phosphorylation of JNK may be associated with diabetes-enhanced ischemic brain damage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700