用户名: 密码: 验证码:
Fenton-like degradation of sulfamethazine using Fe3O4/Mn3O4 nanocomposite catalyst: kinetics and catalytic mechanism
详细信息    查看全文
  • 作者:Zhong Wan ; Jianlong Wang
  • 关键词:Fenton ; like process ; Fe3O4/Mn3O4 nanocomposites ; Sulfamethazine ; Antibiotics
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:24
  • 期:1
  • 页码:568-577
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water M
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-7499
  • 卷排序:24
文摘
The kinetics and catalytic mechanism of sulfamethazine (SMT) degradation using Fe3O4/Mn3O4 nanocomposite as catalysts in heterogeneous Fenton-like process were investigated. The degradation process of SMT conformed to first-order kinetic model. The apparent activation energy (Ea) of the process was calculated to be 40.5 kJ/mol. The reusability and stability of the catalysts were evaluated based on the results of the successive batch experiments. The intermediates were identified and quantified by ion chromatography (IC), high-performance liquid chromatography (HPLC), and gas chromatography–mass spectrometry (GC-MS). The results suggested that the bonds of S–C, N–C, and S–N were broken mainly by ·OH attack to form the organic compounds, which were gradually decomposed into small-molecule organic acids, such as oxalic acid, propionic acid, and formic acid. The possible catalytic mechanism for SMT degradation was tentatively proposed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700