用户名: 密码: 验证码:
Cellulose-based nanostructures for photoresponsive surfaces
详细信息    查看全文
  • 作者:Susete N. Fernandes ; Luis E. Aguirre ; Rita V. Pontes ; João P. Canejo…
  • 关键词:Cellulose derivatives ; Photoresponsive structures ; Wettability ; Tunable interfacial templates ; Nanofilaments
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:465-476
  • 全文大小:1,398 KB
  • 参考文献:Abbood HA, Ahmed KAM, Ren Y, Huang K (2012) MnV2O6·V2O5 cross-like nanobelt arrays: synthesis, characterization and photocatalytic properties. Appl Phys A Mater 112(4):901–909. doi:10.​1007/​s00339-012-7444-y CrossRef
    Adden R, Niedner W, Müller R, Mischnick P (2006) Comprehensive analysis of the substituent distribution in the glucosyl units and along the polymer chain of hydroxyethylmethyl celluloses and statistical evaluation. Anal Chem 78(4):1146–1157. doi:10.​1021/​ac051484q CrossRef
    Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TC, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 98(21):11857–11862. doi:10.​1073/​pnas.​191250198 CrossRef
    Ahir SV, Huang YY, Terentjev EM (2008) Polymers with aligned carbon nanotubes: active composite materials. Polymer 49(18):3841–3854. doi:10.​1016/​j.​polymer.​2008.​05.​005 CrossRef
    Armarego WLF, Chai CLL (2009) Purification of laboratory chemicals, 6th edn. Elsevier, Burlington
    Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK (2013) Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. Langmuir 29(28):8845–8855. doi:10.​1021/​la4017867 CrossRef
    Atalla RS, Crowley MF, Himmel ME, Atalla RH (2014) Irreversible transformation of native celluloses, upon exposure to elevated temperatures. Carbohydr Polym 100:2–8. doi:10.​1016/​j.​carbpol.​2013.​06.​007 CrossRef
    Geissler A, Biesalski M, Heinze T, Zhang K (2014) Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. J Mater Chem A 2(4):1107. doi:10.​1039/​c3ta13937a CrossRef
    Glasser W, Atalla R, Blackwell J, Malcolm Brown R Jr, Burchard W, French A, Klemm D, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598. doi:10.​1007/​s10570-012-9691-7 CrossRef
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
    Hearle JWS (1958) A fringed fibril theory of structure in crystalline polymers. J Polym Sci 28(117):432–435. doi:10.​1002/​pol.​1958.​1202811722 CrossRef
    Ho FF-L, Kohler RR, Ward GA (1972) Determination of molar substitution and degree of substitution of hydroxypropyl cellulose by nuclear magnetic resonance spectrometry. Anal Chem 44(1):178–181CrossRef
    Hu T, Xie H, Xiao J, Zhang H, Chen E (2010) Design, synthesis, and characterization of a combined main-chain/side-chain liquid-crystalline polymer based on ethyl cellulose. Cellulose 17(3):547–558. doi:10.​1007/​s10570-009-9392-z CrossRef
    Huang YY, Knowles TPJ, Terentjev EM (2009) Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21(38–39):3945–3948. doi:10.​1002/​adma.​200900498 CrossRef
    Huang Y, Kang H, Li G, Wang C, Huang Y, Liu R (2013) Synthesis and photosensitivity of azobenzene functionalized hydroxypropylcellulose. RSC Adv 3(36):15909. doi:10.​1039/​c3ra43031f CrossRef
    Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:2. doi:10.​1038/​426611a CrossRef
    Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.​1002/​anie.​201001273 CrossRef
    Kondo T (2005) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 69–98
    Kono H (2013) (1)H and (1)(3)C chemical shift assignment of the monomers that comprise carboxymethyl cellulose. Carbohydr Polym 97(2):384–390. doi:10.​1016/​j.​carbpol.​2013.​05.​031 CrossRef
    Lagerwall JPF, Schütz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80. doi:10.​1038/​am.​2013.​69 CrossRef
    Liebert T, Hornig S, Hesse S, Heinze T (2005) Microscopic visualization of nanostructures of cellulose derivatives. Macromol Symp 223(1):253–266. doi:10.​1002/​masy.​200550518 CrossRef
    Mann G, Kunze J, Loth F, Fink H-P (1998) Cellulose ethers with a block-like distribution of the substituents by structure-selective derivatization of cellulose. Polymer 39(14):3155–3165. doi:10.​1016/​S0032-3861(97)10006-4 CrossRef
    Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587. doi:10.​1007/​s10570-011-9644-6 CrossRef
    Mischnick P (2001) Challenges in structure analysis of polysaccharide derivatives. Cellulose 8(4):245–257. doi:10.​1023/​A:​1015116419080 CrossRef
    Momcilovic D, Schagerlöf H, Wittgren B, Wahlund K-G, Brinkmalm G (2005) Improved chemical analysis of cellulose ethers using dialkylamine derivatization and mass spectrometry. Biomacromolecules 6(5):2793–2799. doi:10.​1021/​bm050270f CrossRef
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi:10.​1039/​c0cs00108b CrossRef
    Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4(4):1013–1017. doi:10.​1021/​bm025772x CrossRef
    Östmark E, Lindqvist J, Nyström D, Malmström E (2007) Dendronized hydroxypropyl cellulose: synthesis and characterization of biobased nanoobjects. Biomacromolecules 8(12):3815–3822. doi:10.​1021/​bm7007394 CrossRef
    Pinto LFV, Kundu S, Brogueira P, Cruz C, Fernandes SN, Aluculesei A, Godinho MH (2011) Cellulose-based liquid crystalline photoresponsive films with tunable surface wettability. Langmuir 27(10):6330–6337. doi:10.​1021/​la200422q CrossRef
    Ranby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. doi:10.​1039/​DF9511100158 CrossRef
    Reuben J (1986) Analysis of the 13C-N.M.R. spectra of hydrolyzed and methanolyze O-methylcelluloses: monomer compositions and models for their description. Carbohydr Res 157:201–213. doi:10.​1016/​0008-6215(86)85069-8 CrossRef
    Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRef
    Richardson S, Andersson T, Brinkmalm G, Wittgren B (2003) Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose. Anal Chem 75(22):6077–6083. doi:10.​1021/​ac0301604 CrossRef
    Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253. doi:10.​1021/​bm301674e CrossRef
    Samuels RJ (1969) Solid-state characterization of the structure and deformation behavior of water-soluble hydroxypropylcellulose. J Polym Sci A2 7(5):1197–1258CrossRef
    Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201(15):2008–2022. doi:10.​1002/​1521-3935(20001001)201:​15<2008:​AID-MACP2008>3.​0.​CO;2-H CrossRef
    Shao K, Liao S, Luo H, Wang M (2008) Self-assembly of polymer and molybdenum oxide into lamellar hybrid materials. J Colloid Interfaces Sci 320(2):445–451. doi:10.​1016/​j.​jcis.​2008.​01.​010 CrossRef
    Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425. doi:10.​1038/​nature09540 CrossRef
    Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103(43):15806–15811. doi:10.​1073/​pnas.​0604035103 CrossRef
    Spurlin HM (1939) Arrangement of substituents in cellulose derivatives. J Am Chem Soc 61(8):2222–2227. doi:10.​1021/​ja01877a070 CrossRef
    Tseng S-L, Valente A, Gray DG (1981) Cholesteric liquid crystalline phases based on (acetoxypropyl)cellulose. Macromolecules 14(3):715–719. doi:10.​1021/​ma50004a049 CrossRef
    Xin B, Hao J (2010) Reversibly switchable wettability. Chem Soc Rev 39(2):769–782. doi:10.​1039/​b913622c CrossRef
    Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68(2):235–241. doi:10.​1016/​j.​carbpol.​2006.​12.​013 CrossRef
  • 作者单位:Susete N. Fernandes (1)
    Luis E. Aguirre (1)
    Rita V. Pontes (1)
    João P. Canejo (1)
    Pedro Brogueira (2)
    Eugene M. Terentjev (3)
    Maria H. Godinho (1)

    1. I3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
    2. Physics Department and ICEMS, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
    3. Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Cellulose is the main constituent of plant cell walls and can be converted into a wide range of derivatives. The derivatives are produced by a chemical reaction of the primary and two secondary hydroxyl groups available in β-d-glucopyranose units, often in heterogeneous conditions, yielding, in many cases, <3 average degrees of substitution per glucose unit. Here we profit from the richness of these systems and different assembly conditions building up from similar nanomicelles, with a characteristic length of ca. 30 nm, different nanostructures: lamellas and filaments that show dissimilar responses to UV irradiation. The chosen cellulose derivative was a thermotropic liquid crystal synthesized by the reaction of 4-(4-methoxyazobenzene-4′-yloxy)butanoyl chloride and acetoxypropylcellulose. The nanostructures were obtained from this cellulose derivative by using spin-coating as well as Langmuir–Blodgett techniques. The nanostructures with a high surface-to-volume ratio, which can be freestanding or grown off a substrate, lead to organic tunable interfacial templates with distinct wettability properties. Keywords Cellulose derivatives Photoresponsive structures Wettability Tunable interfacial templates Nanofilaments

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700