用户名: 密码: 验证码:
The Roles of Reconnected Flux and Overlying Fields in CME Speeds
详细信息    查看全文
  • 作者:Minda Deng ; Brian T. Welsch
  • 关键词:Coronal mass ejections ; Magnetic fields ; corona ; Magnetic fields ; models
  • 刊名:Solar Physics
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:292
  • 期:1
  • 全文大小:
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Astrophysics and Astroparticles; Atmospheric Sciences; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics);
  • 出版者:Springer Netherlands
  • ISSN:1573-093X
  • 卷排序:292
文摘
Researchers have reported i) correlations of coronal mass ejection (CME) speeds and the total photospheric magnetic flux swept out by flare ribbons in flare-associated eruptive events, and, separately, ii) correlations of CME speeds and more rapid decay, with height, of magnetic fields in potential-field coronal models above eruption sites. Here, we compare the roles of both ribbon fluxes and the decay rates of overlying fields in a set of 16 eruptive events. We confirm previous results that higher CME speeds are associated with both higher ribbon fluxes and more rapidly decaying overlying fields. We find the association with ribbon fluxes to be weaker than a previous report, but stronger than the dependence on the decay rate of overlying fields. Since the photospheric ribbon flux is thought to approximate the amount of coronal magnetic flux reconnected during the event, the correlation of speeds with ribbon fluxes suggests that reconnection plays some role in accelerating CMEs. One possibility is that reconnected fields that wrap around the rising ejection produce an increased outward hoop force, thereby increasing CME acceleration. The correlation of CME speeds with more rapidly decaying overlying fields might be caused by greater downward magnetic tension in stronger overlying fields, which could act as a source of drag on rising ejections.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700