用户名: 密码: 验证码:
Comparison of revision strategies for failed C2-posterior cervical pedicle screws: a biomechanical study
详细信息    查看全文
  • 作者:Michael Mayer (1)
    Juliane Zenner (2)
    Robert Bogner (1)
    Wolfgang Hitzl (3)
    Markus Figl (4)
    Arvind von Keudell (1)
    Daniel Stephan (5) (6)
    Rainer Penzkofer (5) (6)
    Peter Augat (5) (6)
    Gundobert Korn (1)
    Herbert Resch (1)
    Heiko Koller (2)
  • 关键词:Cervical pedicle screw ; Failure ; Revision strategy ; Biomechanics ; Pedicle bone ; plastic
  • 刊名:European Spine Journal
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:22
  • 期:1
  • 页码:46-53
  • 全文大小:349KB
  • 参考文献:1. Abumi K, Itoh H, Taneichi H, Kaneda K (1994) Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: description of the techniques and preliminary report. J Spinal Disord 7(1):19-8 CrossRef
    2. Abumi K, Kaneda K (1997) Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine (Phila Pa 1976) 22(16):1853-863 CrossRef
    3. Abumi K, Shono Y, Ito M et al (2000) Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine (Phila Pa 1976) 25(8):962-69 CrossRef
    4. Alosh H, Parker SL, McGirt MJ et al (2010) Preoperative radiographic factors and surgeon experience are associated with cortical breach of C2 pedicle screws. J Spinal Disord Tech 23(1):9-4 CrossRef
    5. Cardoso MJ, Dmitriev AE, Helgeson MD et al (2009) Using lamina screws as a salvage technique at C-7: computed tomography and biomechanical analysis using cadaveric vertebrae. Laboratory investigation. J Neurosurg Spine 11(1):28-3 CrossRef
    6. Choueka J, Spivak JM, Kummer FJ, Steger T (1996) Flexion failure of posterior cervical lateral mass screws. Influence of insertion technique and position. Spine (Phila Pa 1976) 21(4):462-68 CrossRef
    7. Dmitriev AE, Lehman RA Jr, Helgeson MD et al (2009) Acute and long-term stability of atlantoaxial fixation methods: a biomechanical comparison of pars, pedicle, and intralaminar fixation in an intact and odontoid fracture model. Spine (Phila Pa 1976) 34(4):365-70 CrossRef
    8. Hashemi A, Bednar D, Ziada S (2009) Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J 9(5):404-10 CrossRef
    9. Heller JG, Silcox DH III, Sutterlin CE III (1995) Complications of posterior cervical plating. Spine (Phila Pa 1976) 20(22):2442-448 CrossRef
    10. Hirano K, Matsuyama Y, Sakai Y et al (2010) Surgical complications and management of occipitothoracic fusion for cervical destructive lesions in RA patients. J Spinal Disord Tech 23(2):121-26 CrossRef
    11. Hirano T, Hasegawa K, Takahashi HE et al (1997) Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976) 22(21):2504-509 CrossRef
    12. Holly LT, Foley KT (2006) Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine (Phila Pa 1976) 31(5):536-40 CrossRef
    13. Hong JT, Tomoyuki T, Udayakumar R, Espinoza Orias AA, Inoue N, An HS (2011) Biomechanical comparison of three different types of C7 fixation techniques. Spine 36:393-98. doi:10.1097/BRS.0b013e3181d345e0
    14. Hostin RA, Wu C, Perra JH et al (2008) A biomechanical evaluation of three revision screw strategies for failed lateral mass fixation. Spine (Phila Pa 1976) 33(22):2415-421 CrossRef
    15. Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6(6):667-72 CrossRef
    16. Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine (Phila Pa 1976) 22(9):977-82 CrossRef
    17. Kamimura M, Ebara S, Itoh H et al (2000) Cervical pedicle screw insertion: assessment of safety and accuracy with computer-assisted image guidance. J Spinal Disord 13(3):218-24 CrossRef
    18. Karaikovic EE, Daubs MD, Madsen RW, Gaines RW Jr (1997) Morphologic characteristics of human cervical pedicles. Spine (Phila Pa 1976) 22(5):493-00 CrossRef
    19. Karaikovic EE, Yingsakmongkol W, Gaines RW Jr (2001) Accuracy of cervical pedicle screw placement using the funnel technique. Spine (Phila Pa 1976) 26(22):2456-462 CrossRef
    20. Kiner DW, Wybo CD, Sterba W et al (2008) Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine (Phila Pa 1976) 33(24):2618-622 CrossRef
    21. Koller H, Acosta F, Tauber M et al (2008) Cervical anterior transpedicular screw fixation (ATPS)–Part II. Accuracy of manual insertion and pull-out strength of ATPS. Eur Spine J 17(4):539-55 CrossRef
    22. Koller H, Hitzl W, Acosta F et al (2009) In vitro study of accuracy of cervical pedicle screw insertion using an electronic conductivity device (ATPS part III). Eur Spine J 18(9):1300-313 CrossRef
    23. Kothe R, Ruther W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976) 29(17):1869-875 CrossRef
    24. Lehman RA Jr, Dmitriev AE, Helgeson MD et al (2008) Salvage of C2 pedicle and pars screws using the intralaminar technique: a biomechanical analysis. Spine (Phila Pa 1976) 33(9):960-65 CrossRef
    25. Mummaneni PV, Haid RW, Traynelis VC et al (2002) Posterior cervical fixation using a new polyaxial screw and rod system: technique and surgical results. Neurosurg Focus 12(1):E8 CrossRef
    26. Nakashima H, Yukawa Y, Imagama S, Kanemura T, Kamiya M, Yanase M, Ito K, Machino M, Yoshida G, Ishikawa Y, Matsuyama Y, Ishiguro N, Kato F (2012) Complications of cervical pedicle screw fixation for nontraumatic lesions: a multicenter study of 84 patients. J Neurosurg Spine 16:238-47. doi:10.3171/2011.11.SPINE11102
    27. Parker SL, McGirt MJ, Garces-Ambrossi GL et al (2009) Translaminar versus pedicle screw fixation of C2: comparison of surgical morbidity and accuracy of 313 consecutive screws. Neurosurgery 64(5 Suppl 2):343-48
    28. Pfeifer BA, Krag MH, Johnson C (1994) Repair of failed transpedicle screw fixation. A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction. Spine (Phila Pa 1976) 19(3):350-53 CrossRef
    29. Polly DW Jr, Orchowski JR, Ellenbogen RG (1998) Revision pedicle screws. Bigger, longer shims–what is best? Spine (Phila Pa 1976) 23(12):1374-379 CrossRef
    30. Rhee JM, Kraiwattanapong C, Hutton WC (2005) A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction: a biomechanical study. Spine (Phila Pa 1976) 30(21):E636–E640 CrossRef
    31. Schmidt R, Koller H, Wilke HJ et al (2010) The impact of cervical pedicle screws for primary stability in multilevel posterior cervical stabilizations. Spine (Phila Pa 1976) 35(22):E1167–E1171 CrossRef
    32. Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instumentations. Spine (Phila Pa 1976) 28(16):1821-828 CrossRef
    33. Singh K, Vaccaro AR, Kim J et al (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine (Phila Pa 1976) 28(20):2352-358 CrossRef
    34. Tomasino A, Parikh K, Koller H et al (2010) The vertebral artery and the cervical pedicle: morphometric analysis of a critical neighborhood. J Neurosurg Spine 13(1):52-0 CrossRef
    35. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148-54 CrossRef
    36. Xu R, Nadaud MC, Ebraheim NA, Yeasting RA (1995) Morphology of the second cervical vertebra and the posterior projection of the C2 pedicle axis. Spine (Phila Pa 1976) 20(3):259-63 CrossRef
    37. Yoshimoto H, Sato S, Hyakumachi T, Yanagibashi Y, Masuda T (2005) Spinal reconstruction using a cervical pedicle screw system. Clin Orthop Relat Res. (431):111-19
    38. Yukawa Y, Kato F, Yoshihara H, Yanase M, Ito K (2006) Cervical pedicle screw fixation in 100 cases of unstable cervical injuries: pedicle axis views obtained using fluoroscopy. J Neurosurg Spine 5(6):488-93 CrossRef
  • 作者单位:Michael Mayer (1)
    Juliane Zenner (2)
    Robert Bogner (1)
    Wolfgang Hitzl (3)
    Markus Figl (4)
    Arvind von Keudell (1)
    Daniel Stephan (5) (6)
    Rainer Penzkofer (5) (6)
    Peter Augat (5) (6)
    Gundobert Korn (1)
    Herbert Resch (1)
    Heiko Koller (2)

    1. Department for Traumatology and Sports Injuries, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
    2. German Scoliosis Center Bad Wildungen, Werner-Wicker-Klinik, Bad Wildungen, Germany
    3. Research Office, Biostatistics, Paracelsus Medical University, Salzburg, Austria
    4. Department for Traumatology, General Hospital, Tulln, Austria
    5. Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany
    6. Institute of Biomechanics, Paracelsus Medical University, Salzburg, Austria
  • ISSN:1432-0932
文摘
Study purpose With increasing usage within challenging biomechanical constructs, failures of C2 posterior cervical pedicle screws (C2-pCPSs) will occur. The purpose of the study was therefore to investigate the biomechanical characteristics of two revision techniques after the failure of C2-pCPSs. Materials and methods Twelve human C2 vertebrae were tested in vitro in a biomechanical study to compare two strategies for revision screws after failure of C2-pCPSs. C2 pedicles were instrumented using unicortical 3.5-mm CPS bilaterally (Synapse/Synthes, Switzerland). Insertion accuracy was verified by fluoroscopy. C2 vertebrae were potted and fixed in an electromechanical testing machine with the screw axis coaxial to the pullout direction. Pullout testing was conducted with load and displacement data taken continuously. The peak load to failure was measured in newtons (N) and is reported as the pullout resistance (POR). After pullout, two revision strategies were tested in each vertebra. In Group-1, revision was performed with 4.0-mm C2-pCPSs. In Group-2, revision was performed with C2-pedicle bone-plastic combined with the use of a 4-mm C2-pCPSs. For the statistical analysis, the POR between screws was compared using absolute values (N) and the POR of the revision techniques normalized to that of the primary procedures (%). Results The POR of primary 3.5-mm CPSs was 1,140.5?±?539.6?N for Group-1 and 1,007.7?±?362.5?N for Group-2; the difference was not significant. In the revision setting, the POR in Group-1 was 705.8?±?449.1?N, representing a reduction of 38.1?±?32.9?% compared with that of primary screw fixation. For Group-2, the POR was 875.3?±?367.9?N, representing a reduction of 13.1?±?23.4?%. A statistical analysis showed a significantly higher POR for Group-2 compared with Group-1 (p?=?0.02). Although the statistics showed a significantly reduced POR for both revision strategies compared with primary fixation (p?<?0.001/p?=?0.001), the loss of POR (in %) in Group-1 was significantly higher compared with the loss in Group-2 (p?=?0.04). Conclusions Using a larger-diameter screw combined with the application of a pedicle bone-plastic, the POR can be significantly increased compared with the use of only an increased screw diameter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700