用户名: 密码: 验证码:
How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?
详细信息    查看全文
  • 作者:Chompoonut Rungnim ; Rungroj Chanajaree…
  • 关键词:Nucleobase ; analog ; Graphene ; Density functional theory
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 全文大小:1,352 KB
  • 参考文献:1.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.​1126/​science.​1102896 CrossRef
    2.Song B, Cuniberti G, Sanvito S, Fang HP (2012) Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl Phys Lett 100(6):063101–063104. doi:10.​1063/​1.​3681579
    3.Yang M, Yao J, Duan Y (2013) Graphene and its derivatives for cell biotechnology. Analyst 138(1):72–86. doi:10.​1039/​c2an35744e CrossRef
    4.Xu Z, Wang S, Li Y, Wang M, Shi P, Huang X (2014) Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl Mater Interfaces 6(19):17268–17276. doi:10.​1021/​am505308f
    5.Shi S, Chen F, Ehlerding EB, Cai W (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjugate Chem 25(9):1609–1619. doi:10.​1021/​bc500332c
    6.Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, Khademhosseini A (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8):8050–8062. doi:10.​1021/​nn5020787
    7.Zhang S, Yang K, Feng L, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49(12):4040–4049. doi:10.​1016/​j.​carbon.​2011.​05.​056 CrossRef
    8.Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. doi:10.​1021/​ja803688x
    9.Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z (2010) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5(1):516–522. doi:10.​1021/​nn1024303
    10.Panigrahi S, Bhattacharya A, Banerjee S, Bhattacharyya D (2012) Interaction of nucleobases with wrinkled graphene surface: dispersion corrected DFT and AFM studies. J Phys Chem C 116(7):4374–4379. doi:10.​1021/​jp207588s
    11.Husale S, Sahoo S, Radenovic A, Traversi F, Annibale P, Kis A (2010) ssDNA binding reveals the atomic structure of graphene. Langmuir 26(23):18078–18082. doi:10.​1021/​la102518t
    12.Liu F, Choi JY, Seo TS (2010) DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem Commun 46(16):2844–2846. doi:10.​1039/​b923656b CrossRef
    13.Miliordos E, Aprà E, Xantheas SS (2014) Benchmark theoretical study of the π–π binding energy in the benzene dimer. J Phys Chem A 118(35):7568–7578. doi:10.​1021/​jp5024235
    14.Ferguson KM (2008) Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 37(1):353–373. doi:10.​1146/​annurev.​biophys.​37.​032807.​125829
    15.Janowski T, Pulay P (2007) High accuracy benchmark calculations on the benzene dimer potential energy surface. Chem Phys Lett 447(1–3):27–32. doi:10.​1016/​j.​cplett.​2007.​09.​003 CrossRef
    16.Zhang C (2011) Shape and size effects in π–π interactions: face-to-face dimers. J Comput Chem 32(1):152–160. doi:10.​1002/​jcc.​21612
    17.Jha PC, Rinkevicius Z, Agren H, Seal P, Chakrabarti S (2008) Searching of potential energy curves for the benzene dimer using dispersion-corrected density functional theory. PCCP 10(19):2715–2721. doi:10.​1039/​b717983a CrossRef
    18.Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Higher-accuracy van der Waals density functional. Phys Rev B 82(8):081101. doi:10.​1103/​PhysRevB.​82.​081101 CrossRef
    19.Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Accounts Chem Res 41(2):157–167. doi:10.​1021/​ar700111a
    20.Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241. doi:10.​1007/​s00214-007-0310-x CrossRef
    21.Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228. doi:10.​1002/​wcms.​30 CrossRef
    22.Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104–154119. doi:10.​1063/​1.​3382344
    23.Reid SA, Nyambo S, Muzangwa L, Uhler B (2013) π-Stacking, C–H/π, and halogen bonding interactions in bromobenzene and mixed bromobenzene–benzene clusters. J Phys Chem A 117(50):13556–13563. doi:10.​1021/​jp407544c
    24.Bandyopadhyay B, Cheng TC, Wheeler SE, Duncan MA (2012) Vibrational spectroscopy and theory of the protonated benzene dimer and trimer. J Phys Chem A 116(26):7065–7073. doi:10.​1021/​jp304091h
    25.Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117(47):12590–12600. doi:10.​1021/​jp408166m
    26.Lu X, Shi H, Chen J, Ji D (2012) Theoretical study of different substituent benzenes and benzene dimers blue-shifted hydrogen bonds. Comp Theor Chem 982:34–39. doi:10.​1016/​j.​comptc.​2011.​12.​005 CrossRef
    27.Mishra BK, Karthikeyan S, Ramanathan V (2012) Tuning the C-H···π interaction by different substitutions in benzene-acetylene complexes. J Chem Theory Comput 8(6):1935–1942. doi:10.​1021/​ct300100h
    28.Janowski T, Pulay P, Karunarathna AAS, Sygula A, Saebo S (2011) Convex-concave stacking of curved conjugated networks: benchmark calculations on the corannulene dimer. Chem Phys Lett 512(4–6):155–160. doi:10.​1016/​j.​cplett.​2011.​07.​030
    29.Sherrill CD, Takatani T, Hohenstein EG (2009) An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S. J Phys Chem A 113(38):10146–10159. doi:10.​1021/​jp9034375
    30.Ovaa H, Kuijl C, Neefjes J (2009) Recent and new targets for small molecule anti-cancer agents. Drug Discov Today Technol 6(1–4):e3–e11. doi:10.​1016/​j.​ddtec.​2010.​01.​001 CrossRef
    31.Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Physisorption of nucleobases on graphene: density-functional calculations. Phys Rev B 76(3):033401. doi:10.​1103/​PhysRevB.​76.​033401
    32.Ramraj A, Hillier IH, Vincent MA, Burton NA (2010) Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes. Chem Phys Lett 484(4–6):295–298. doi:10.​1016/​j.​cplett.​2009.​11.​068 CrossRef
    33.Umadevi D, Sastry GN (2011) Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J Phys Chem Lett 2(13):1572–1576. doi:10.​1021/​jz200705w
    34.Kristian B, Svetla DC-K, Valentino RC, David CL, Elsebeth S (2011) A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding. J Phys Condens Matter 23(13):135001. doi:10.​1088/​0953-8984/​23/​13/​135001 CrossRef
    35.Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK, Sood AK, Rao CNR (2009) Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 10(1):206–210. doi:10.​1002/​cphc.​200800459
    36.Antony J, Grimme S (2008) Structures and interaction energies of stacked graphene-nucleobase complexes. Phys Chem Chem Phys 10(19):2722–2729. doi:10.​1039/​b718788b CrossRef
    37.Le D, Kara A, Schröder E, Hyldgaard P, Rahman TS (2012) Physisorption of nucleobases on graphene: a comparative van der Waals study. J Phys Condens Matter 24(42):424210CrossRef
    38.Wu M, Wang Q, Sun Q, Jena P (2013) Functionalized graphitic carbon nitride for efficient energy storage. J Phys Chem C 117(12):6055–6059. doi:10.​1021/​jp311972f
    39.Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. doi:10.​1080/​0026897700010156​1 CrossRef
    40.Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? J Chem Phys 105(24):11024–11031. doi:10.​1063/​1.​472902 CrossRef
    41.Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05−2X and M06−2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000. doi:10.​1021/​ct800308k
  • 作者单位:Chompoonut Rungnim (1)
    Rungroj Chanajaree (2)
    Thanyada Rungrotmongkol (3) (4)
    Supot Hannongbua (5)
    Nawee Kungwan (6)
    Peter Wolschann (5) (7) (8)
    Alfred Karpfen (7)
    Vudhichai Parasuk (5)

    1. NANOTEC, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
    2. Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, 10330, Thailand
    3. Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
    4. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
    5. Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
    6. Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
    7. Institute for Theoretical Chemistry, University of Vienna, Vienna, 1090, Austria
    8. Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, 1090, Austria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700