用户名: 密码: 验证码:
Chauves-souris et virus : des relations complexes
详细信息    查看全文
  • 作者:F. Rodhain
  • 关键词:Chiropt猫res ; Chauves ; souris ; Virus ; Zoonoses virales ; Homme ; 脡pid茅miologie ; Tol茅rance immunitaire ; 脡pid茅mies 茅mergentes ; Chiroptera ; Bats ; Virus ; Viral zoonoses ; Man ; Epidemiology ; Immune evasion and Virus persistence ; Emerging epidemics
  • 刊名:Bulletin de la Soci篓娄t篓娄 de pathologie exotique
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:108
  • 期:4
  • 页码:272-289
  • 全文大小:1,391 KB
  • 参考文献:1.AFSSA (2003). Rapport sur la rage des Chiropt猫res en France m茅tropolitaine. Afssa, 70 p.
    2.Annan A, Baldwin H J, Corman VMn et al (2013) Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis 19(3):456鈥?PubMed Central CrossRef PubMed
    3.Badrane H, Tordo N (2001) Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 75(17) 8096鈥?104PubMed Central CrossRef PubMed
    4.Banyard AC, Hayman D, Johnson N, et al (2011). Bats and Lyssavirus. Adv Virus Res 79:239鈥?9CrossRef PubMed
    5.Blackwood JC, Streicker DG, Altizer S, Rohani P (2013). Resolving the roles of immunity, pathogenesis and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci U S A 110(51):20837鈥?2PubMed Central CrossRef PubMed
    6.Breed AC, Field HE, Smith CS, et al (2010). Bats without borders: long-distance movements and implications for disease risk management. Ecohealth 7(2):204鈥?2CrossRef PubMed
    7.Breed AC, Meers J, Sendow I, et al (2013). The distribution of henipaviruses in Southeast Asia and Australasia: is Wallace鈥檚 line a barrier to Nipah virus? PlosOne 8(4):1鈥?CrossRef
    8.Brosset A (1990) Les migrations de la pipistrelle de Nathusius, Pipistrellus nathusii, en France. Ses incidences possibles sur la propagation de la rage. Mammalia 54:207鈥?2
    9.Calisher CH, Childs JE, Field HE, et al (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19(3):531鈥?5PubMed Central CrossRef PubMed
    10.Carrington CV, Foster JE, Zhu HC, et al (2008). Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis 14(12):1890鈥?PubMed Central CrossRef PubMed
    11.Chan JF, To KK, Tse H, et al (2013) Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 21(10):544鈥?5CrossRef PubMed
    12.Ching PK, de los Reyes VC, Sucaldito MN, et al (2015) Outbreak of Henipavirus Infection, Philippines, 2014. Emerg Infect Dis 21(2):328鈥?1PubMed Central CrossRef PubMed
    13.Chua KB, Goh KJ, Wong KT, et al (1999). Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354 (9186):1257鈥?CrossRef PubMed
    14.Corman VM, Ithete NL, Richards LR, et al (2014). Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol 88(19):11297鈥?03PubMed Central CrossRef PubMed
    15.Daszak P, Zambrana-Torrelio C, Bogich TL, et al (2013). Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci U S A 110(Suppl 1):3681鈥?PubMed Central CrossRef PubMed
    16.Drexler JF, Corman VM, M眉ller MA, et al (2012). Bats host major mammalian paramyxoviruses. Nat Commun 3:796PubMed Central CrossRef PubMed
    17.Field H, Young P, Yob JM, et al (2001). The natural history of Hendra and Nipah viruses. Microbes Infect 3(4):307鈥?4CrossRef PubMed
    18.Food and Agriculture Organisation of the United Nations (2011). Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein (茅dit.), FAO Animal Production and Health Manual N掳 12, Rome.
    19.Hahn MB, Gurley ES, Epstein JH, et al (2014). The Role of Landscape composition and configuration on Pteropus giganteus Roosting Ecology and Nipah virus spillover Risk in Bangladesh. Am J Trop Med Hyg 90(2):247鈥?5PubMed Central CrossRef PubMed
    20.Hall RJ, Wang J, Peacey M, et al (2014). New Alphacoronavirus in Mystacina tuberculata Bats, New Zealand. Emerg Infect Dis 20(4):697鈥?00PubMed Central PubMed
    21.Hyatt AD, Daszak P, Cunningham AA, et al (2004) Henipaviruses: Gaps in the Knowledge of Emergence. Ecohealth 1:25鈥?8CrossRef
    22.Khan MS, Hossain J, Gurley ES, et al (2010). Use of infrared camera to understand bats鈥?access to date palm sap: implications for preventing Nipah virus transmission. Ecohealth 7(4):517鈥?5CrossRef PubMed
    23.Lau SK, Woo PC, Li KS, et al (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe Bats. Proc Natl Acad Sci U S A 102(39):14040鈥?PubMed Central CrossRef PubMed
    24.Li W, Shi Z, Yu M, et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310(5748):676鈥?CrossRef PubMed
    25.Memish ZA, Mishra N, Olival KJ, et al (2013) Middle East respiratory syndrome Coronavirus in Bats, Saudi Arabia. Emerg Infect 19(11):1819鈥?3
    26.Messenger SL, Smith JS, Rupprecht CE (2002) Emerging epidemiology of bat-associated cryptic cases of rabies in humans in the United States. Clin Infect Dis 35(6):738鈥?7CrossRef PubMed
    27.Moutou F (2007) La Vengeance de la Civette masqu茅e. Le Pommier, Paris, 332 p.
    28.M眉ller MA, Paweska JT, Leman PA, et al (2007). Coronavirus antibodies in African bat species. Emerg Infect Dis 13(9):1367鈥?0PubMed Central CrossRef PubMed
    29.Nadin-Davis SA, Real LA (2011) Molecular phylogenetics of the lyssaviruses鈥揑nsights from a coalescent approach. Adv Virus Res 79:203鈥?8CrossRef PubMed
    30.Nahar N, Sultana R, Gurley ES, et al (2010) Date palm sap collection: exploring opportunities to prevent Nipah transmission. Ecohealth 7(2):196鈥?03CrossRef PubMed
    31.O鈥橲hea TJ, Cryan PM, Cunningham AA, et al (2014). Bat flight and zoonotic viruses. Emerg Infect Dis 20(5):741鈥?PubMed Central CrossRef PubMed
    32.Pfefferle S, Oppong S, Drexler JF, et al (2009) Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis 15(9):1377鈥?4CrossRef PubMed
    33.Picard-Meyer E, Robardet E, Arthur L, et al (2014) Bat rabies in France: a 24-year retrospective epidemiological study. PLoS One 9(6):e98622PubMed Central CrossRef PubMed
    34.Shankar V, Orciari L A, Mattos C D, Kuzmin I V, Pape W J et al (2005). Genetic divergence of rabies viruses from bat species of Colorado, USA. Vector Borne Zoonotic Dis 5(4):330鈥?1CrossRef PubMed
    35.Simas PV, Barnab茅 AC, Dur茫es-Carvalho R, et al (2015). Bat coronavirus in Brazil related to appalachian ridge and porcine epidemic diarrhea viruses. Emerg Infect Dis 21(4):729鈥?1PubMed Central CrossRef PubMed
    36.Streicker DG, Turmelle AS, Vonhof MJ, et al (2010) Host Phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329(5992):676鈥?CrossRef PubMed
    37.Tong S, Conrardy C, Ruone S, et al (2009) Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis 15(3):482鈥?PubMed Central CrossRef PubMed
    38.Towner JS, Pourrut X, Albari帽o CG, et al (2007). Marburg virus infection detected in a common African bat. PLoS One 2(8):e764PubMed Central CrossRef PubMed
    39.Turmelle AS, Olival KJ (2009) Correlates of viral richness in bats (Order Chiroptera). Ecohealth 6(4):522鈥?9CrossRef PubMed
    40.Vabret A, Pillet S & Enouf V (2013) Un nouveau coronavirus venu du Moyen-Orient. Virologie 17:211鈥?5
    41.van der Poel WH, Lina PH, Kramps JA (2006) Public health awareness of emerging zoonotic viruses of bats: a European perspective. Vector Borne Zoonotic Dis 6(4):315鈥?4CrossRef PubMed
    42.Watanabe S, Masangkay JS, Nagata N, et al (2010) Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis 16(8):1217鈥?3PubMed Central CrossRef PubMed
    43.Wong S, Lau S, Woo P, Yuen KY (2007) Bats as a continuing source of emerging infections in humans. Rev Med Virol 17(2):67鈥?1CrossRef PubMed
    44.Yang L, Wu Z, Ren X, et al (2014) MERS-related Betacoronavirus in Vespertilio superans Bats, China. Emerg Infect Dis 20(7):1260鈥?CrossRef PubMed
    45.Zhang G, Cowled C, Shi Z, et al (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339(6118):456鈥?0CrossRef PubMed
  • 作者单位:F. Rodhain (1)

    1. Professeur honoraire 脿 l鈥橧nstitut Pasteur, 132, boulevard du Montparnasse, 75014, Paris, France
  • 刊物主题:Internal Medicine; Tropical Medicine; Infectious Diseases; Gastroenterology; Epidemiology; Parasitology;
  • 出版者:Springer Paris
  • ISSN:1961-9049
文摘
With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to some of their biologic properties which are not fully documented, like their extreme longevity, their diet, the population size and the particular densities observed in species with crowded roosting behavior, the population structure and migrations, the hibernation permitting overwintering of viruses, their particular innate and acquired immune response, probably related at least partially to their ability to fly, allowing persistent virus infections and preventing immunopathological consequences, etc. It is also necessary to get a better knowledge of the interactions between bats and ecologic changes induced by man and to attentively follow bat populations and their viruses through surveillance networks involving human and veterinary physicians, specialists of wild fauna, ecologists, etc. in order to understand the mechanisms of disease emergence, to try to foresee and, perhaps, to prevent viral emergences beforehand. Finally, a more fundamental research about immune mechanisms developed in viral infections is essential to reveal the reasons why Chiroptera are so efficient reservoir hosts. Clearly, a great deal of additional work is needed to document the roles of bats in the natural history of viruses. Keywords Chiroptera Bats Virus Viral zoonoses Man Epidemiology Immune evasion and Virus persistence Emerging epidemics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700