用户名: 密码: 验证码:
Parallel Forwarding for Efficient Bandwidth Utilization in Networks-on-Chip
详细信息    查看全文
  • 关键词:Network ; on ; Chip ; Heterogeneous packet size ; Bandwidth utilization
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:10172
  • 期:1
  • 页码:152-163
  • 丛书名:Architecture of Computing Systems - ARCS 2017
  • ISBN:978-3-319-54999-6
  • 卷排序:10172
文摘
Networks-on-chip (NoC) provide a scalable and power-efficient communication infrastructure for different computing chips, ranging from fully customized multi/many-processor systems-on-chip (MPSoCs) to general-purpose chip multiprocessors (CMPs). A common aspect in almost all NoC workloads is the varying size of data transmitted by each transaction: while large data blocks are transferred as multiple-flit packets, a part of the traffic consists of short data segment (control data) that does not even fill a single flit. In conventional NoCs, switch allocator assigns/grants a switch output (and the link connected to it) to a single flit at each cycle, even if the flit is shorter than the link bit-width. In this paper, we propose a novel NoC architecture that enables routers to simultaneously send two short flits on the same link, effectively utilizing the link bandwidth that otherwise would be wasted. To this end, new crossbar, virtual channel (VC), and switch allocator architectures are presented to support parallel short packet forwarding on NoC links. Simulation results using synthetic and realistic workloads show that the proposed architecture improves the NoC performance by up to 24%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700