用户名: 密码: 验证码:
Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen
详细信息    查看全文
文摘
Since the late 1960s, low hydrogen injection temperature is known to have a destabilising effect on rocket engines with the propellant combination hydrogen/oxygen. Self-excited combustion instabilities of the first tangential mode have been found recently in a research rocket combustor operated with the propellant combination hydrogen/oxygen with a hydrogen temperature of 95 K. A hydrogen temperature ramping experiment has been performed with this research combustor to analyse the impact of hydrogen temperature on the self-excited combustion instabilities. The temperature was varied between 40 and 135 K. Contrary to past results found in literature, the combustor was found to be stable at low hydrogen temperatures while increased oscillation amplitudes of the first tangential mode were found at higher temperatures of around 100 K and above, which is consistent with previous observations of instabilities in this combustor. Further analysis shows that hydrogen temperature has a strong impact on the combustion chamber resonance frequencies. By varying the hydrogen injection temperature, the frequency of the first tangential mode is shifted to coincide with the second longitudinal resonance frequency of the liquid oxygen injector. Excitation of combustion chamber pressure oscillations was observed during such events.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700