用户名: 密码: 验证码:
Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in hilly Loess Plateau
详细信息    查看全文
  • 作者:Qiang Li ; Guobin Liu ; Zheng Zhang ; Dengfeng Tuo…
  • 关键词:fibrous roots ; tap roots ; root density ; soil structural properties ; soil anti ; scouribility ; hilly Loess Plateau ; China
  • 刊名:Chinese Geographical Science
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:25
  • 期:6
  • 页码:757-764
  • 全文大小:428 KB
  • 参考文献:Adili A A, Azzam R, Spagnoli G et al., 2012. Strength of soil reinforced with fiber materials (Papyrus). Soil Mechanics and Foundation Engineering, 48(6): 241–247. doi: 10.1007/s11204-012-9154-zCrossRef
    Burylo M, Hudek C, Rey F, 2011. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena, 84(1–2): 70–78. doi: org/10.1016/j.catena.2010.09.007CrossRef
    Cai Q G, 2001. Soil erosion and management on the Loess Plateau. Journal of Geographical Sciences, 11(1): 53–70. doi: 10.1007/BF02837376CrossRef
    Dai Quanhou, Liu Guobin, Xue Sha et al., 2007. Dynamics of soil water stable aggregates and relationship with soil properties on abandoned arable land in eroded hilly Loess Plateau. Journal of Soil and Water Conservation, 21(2): 61–64, 77. (in Chinese)
    De Baets S, Poesen J, Gyssels G et al., 2006. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 76(1–2): 54–67. doi: org/10.1016/geomorph.2005.10.002CrossRef
    De Baets S, Poesen J, Knapen A et al., 2007. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surface Process Landforms, 32(9): 1323–1345. doi: 10.1002/esp.1470CrossRef
    Fang C, Li X W, Zhang J et al., 2008. Biomass of fine roots and its relationship with water-stable aggregates in a composite ecosystem of triploid Populus tomentosa in the conversion of farmland to forest. Frontiers of Forestry in China, 3(2): 158–164. doi: 10.1007/s1146-008-0031-xCrossRef
    Fu B J, Liu Y, Lyu Y H et al., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecoogical Complexity, 8(4): 284–293. doi: org/10.1016/j.ecocom.2011.07.003CrossRef
    Fu Chen, Peng Buzhuo, 2000. The effect of land use changes on soil conditions in arid region. Chinese Geographical Science, 10(3): 226–230. doi: 10.1007/s1169-000-0005CrossRef
    Genet M, Kokutse N, Stokes A et al., 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: Effect of tree age and stand structure on slope stability. Forest Ecological Management, 256(8): 1517–1526. doi: 10.1016/j.foreco.2008.05.050CrossRef
    Glab T, Kacorzyk P, 2011. Root distribution and herbage production under different management regimes of mountain grassland. Soil Tillage Research, 113(2): 99–104. doi: org/10.1016/j.still.2011.02008CrossRef
    Gogichaishvili G P, 2012. Erodibility of arable soils in Georgia during the period of storm runoff. Eurasian Soil Science, 45(2): 189–193. doi: 10.1134/s106422931202010xCrossRef
    Govers G, Everaert W, Poesen J et al., 1990. A long flume study of the dynamic factors affecting the resistance of a loamy soil to concentrated flow erosion. Earth Surface Process Landform, 15(4): 515–524. doi: 10.1002/esp.3290150403CrossRef
    Gyssels G, Poesen J, Bochet E et al., 2003. The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Process Landforms, 28(4): 371–384. doi: 10.1002/esp.447CrossRef
    Gyssels G, Poesen J, Nachtergaele J et al., 2002. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones. Soil Tillage Research, 64(3): 189–201. doi: org/10.1016/j.still.2002.02008CrossRef
    Jia G M, Cao J, Wang C Y et al., 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, Northwest China. Forest Ecology and Management, 217(1): 117–125. doi: 10.1016/j.foreco.2005.05.055CrossRef
    Jiang Dingsheng, Li Xinhua, Fan Xingke et al., 1995. Research on the law of soil disintegration rate change and it′s effect factors on the Loess Plateau. Bulletin of Soil and Water Conservation, 15(3): 20–27. (in Chinese)
    Lian Jie, Zhao Xueyong, Zuo Xiao′an et al., 2013. Land cover changes and the effects of cultivation on soil properties in Shelihu wetland, Horqin Sandy Land, Northern China. Journal of Arid Land, 5(1): 71–79. doi: 10.1007/s40333-013-0143-5CrossRef
    Liu Guobin, 1998. Study on soil anti-scouribility and its mechanism. Journal of Soil and Water Conservation, 4(1): 93–96. (in Chinese)
    Marquez C O, Garcia V J, Cambardella C A et al., 2004. Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 68(3): 725–735. doi: 10.2136/222aj2004.7250CrossRef
    Prosser I P, Dietrich W E, Stevenson J, 1995. Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 13(1–4): 71–86. doi: org/10.1016/0169-555x(95)00020-6CrossRef
    Reinhart K O, Johnson D, Clay K, 2012. Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA. PLOS ONE, 7(7): 1–7. doi: 10.1371/journal.pone.0040680CrossRef
    Sandeep K, Udawatta R P, Anderson S H, 2010. Root length density and carbon content of agroforestry and grass buffers under grazed pasture systems in a Hapludalf. Agroforestry Systems, 80(1): 85–96. doi: 10.1007/s10457-010-9312-0CrossRef
    Schuppener, 1999. Laboratory Method for Direct Shear Tests. Recommendation of the ISSMGE for Geotechnical Testing. Gemany: Beuth Verlag GmbH, 87–92.
    Su Z A, Zhang J H, Nie X J, 2010. Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 20(6): 736–746. doi: org/10.1016/s1002-0160(10)60064-1CrossRef
    Van Bavel C H M, 1949. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of America Journal, 14(C): 20–23.CrossRef
    Wang Junming, Zhang Xinchang, 2010. Vertical distribution of root in different successional stages of grassland on abandoned cropland. Science Soil and Water Conservarion, 8(4): 67–72, 85. (in Chinese)
    Yoder R E, 1936. A direct method of aggregate analysis of soils and study of the physical nature of soil erosion losses. Agronomy Journal, 28(5): 337–351.CrossRef
    Zhang C, Liu G B, Xue S et al., 2012. Rhizosphere soil microbial properties on abandoned croplands in the Loess Plateau, China during vegetation succession. European Journal of Soil Biology, 50: 127–136. doi: org/10.1016/j.ejsobi.2012.01.002CrossRef
    Zhang G H, Liu G B, Wang G L et al., 2011. Effect of vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere, 21(5): 676–684. doi: org/10.1016/s1002-0160(11)60170-7CrossRef
    Zhang K L, Li S, Peng W, 2004. Erodibility of agricultural soils on the Loess Plateau of China. Soil and Tillage Research, 76(2): 157–165. doi: org/10.1016/j.still.2003.09.007CrossRef
    Zhang Lihua, Xie Zhongkui, Zhao Ruifeng et al., 2012. The impact of land use change on soil organic carbon and labile organic carbon stocks in the Longzhong region of Loess Plateau. Journal of Arid Land, 4(3): 241–250. doi: 10.3724/SP.J.1227.2012.00241CrossRef
    Zhou Z C, Gan Z T, Shangguan Z P et al., 2010. Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the northern Loess Plateau. Catena, 82(2): 87–91. doi: org/10.1016/j.catena.2010.05.005CrossRef
    Zhou Z C, Shangguan Z P, 2005. Soil anti-scouribility enhanced by plant roots. Journal of Integrative Plant Bioogy, 47(6): 676–682. doi: 10.1111/j.1744-7909.2005.00067.xCrossRef
    Zhou Z C, Shangguan Z P, 2007. The effects of ryegrass roots and shoots on loess erosion under simulated rainfall. Catena, 70(3): 350–355. doi: org/10.1016/j.catena.2006.11.002CrossRef
  • 作者单位:Qiang Li (1) (3)
    Guobin Liu (1) (2)
    Zheng Zhang (2)
    Dengfeng Tuo (2)
    Mingxiang Xu (1) (2)

    1. State Key Laboratory of Soil Erosion and Dry Land Farming, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
    3. University of Chinese Academy of Sciences, Beijing, 100049, China
    2. Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
  • 刊物主题:Geography (general);
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-064X
文摘
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare (control), 2) purple alfalfa (Medicago sativa), representing tap roots (T), 3) switchgrass (Panicum virgatum), representing fibrous roots (F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots (T + F), and 5) natural recovery (N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength (cohesion and angle of internal friction (φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau. Keywords fibrous roots tap roots root density soil structural properties soil anti-scouribility hilly Loess Plateau China

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700