用户名: 密码: 验证码:
Dipping Process Characteristics Based on Image Processing of Pictures Captured by High-speed Cameras
详细信息    查看全文
  • 作者:Junhui Li ; Yang Xia ; Wei Wang ; Fuliang Wang ; Wei Zhang ; Wenhui Zhu
  • 关键词:Dipping acceleration ; Dipping speed ; Dipping time ; Viscosity ; Image processing
  • 刊名:Nano-Micro Letters
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:7
  • 期:1
  • 页码:1-11
  • 全文大小:7162KB
  • 参考文献:1.J. Li, L. Han, J. Duan, J. Zhong, Interface mechanism of ultrasonic flip chip bonding. Appl. Phys. Lett. 90, 242902 (2007). doi:10.-063/-.-747673 CrossRef
    2.J. Sutanto, S. Anand, C. Patel, Novel first-level interconnect techniques for flip chip on mems devices. J. Microelectromech. S. 21(1), 132-44 (2012). doi:10.-109/?JMEMS.-011.-171326 CrossRef
    3.J. Li, L. Liu, L. Deng, B. Ma, F. Wang, L. Han, Interfacial microstructures and thermodynamics of thermosonic Cu-wire bonding. IEEE Electr. Device L. 32(10), 1433-435 (2011). doi:10.-109/?LED.-011.-161749 CrossRef
    4.H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Behavior of intermetallics, aluminum oxide and voids in Cu–Al wire bonds. Acta Mater. 59(14), 5661-673 (2011). doi:10.-016/?j.?actamat.-011.-5.-41 CrossRef
    5.F. Wang, L. Han, Experimental study of thermosonic gold bump flip-chip bonding with a smooth end tool. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 930-34 (2013). doi:10.-109/?TCPMT.-013.-257926 CrossRef
    6.Y.C. Liang, H.W. Lin, H.P. Chen, Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints. Scripta Mater. 69(1), 25-8 (2013). doi:10.-016/?j.?scriptamat.-013.-3.-18 CrossRef
    7.J. Li, J. Duan, L. Han, J. Zhong, Microstructural characteristics of Au/Al bonded interfaces. Mater. Charact. 58, 103-07 (2007). doi:10.-016/?j.?matchar.-006.-3.-18 CrossRef
    8.J. Li, F. Wang, L. Han, J. Zhong, Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces. J. Phys D-Appl. Phys. 41, 135303 (2008). doi:10.-088/-022-3727/-1/-3/-35303 CrossRef
    9.B. Xiong, Z. Yin, A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process 21(14), 1663-675 (2012). doi:10.-109/?TIP.-011.-172804 CrossRef MathSciNet
    10.H.N. Yen, D.M. Tsai, S.K. Feng, Full-field 3D flip-chip solder bumps measurement using DLP-based phase shifting technique. IEEE Trans. Adv. Packag. 31, 830-40 (2008). doi:10.-109/?TADVP.-008.-005015 CrossRef
    11.J. Li, X. Zhang, L. Liu, L. Deng, L. Han, Effects of ultrasonic power and time on bonding strength and interfacial atomic diffusion during thermosonic flip-chip bonding. IEEE Trans. Compon. Packag. Technol. 2(3), 521-26 (2012). doi:10.-109/?TCPMT.-012.-183601 CrossRef
    12.Z. Liu, P.S. Valvo, Y. Huang, Z. Yin, Cohesive failure analysis of an array of IC chips bonded to a stretched substrate. Int. J. Solids Struct. 50(22-3), 3528-538 (2013). doi:10.-016/?j.?ijsolstr.-013.-6.-21 CrossRef
    13.K. Shen, W. Lin, D. Wuu, S. Huang, K. Wen, S. Pai, L. Wu, R. Horng, An 83?% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask. IEEE Electr. Device L. 34(2), 274-76 (2013). doi:10.-109/?LED.-012.-228462 CrossRef
    14.J. Li, X. Zhang, L. Liu, L. Deng, L. Han, Interfacial characteristics and dynamic process of Au- and Cu-wire bonding and overhang bonding in microelectronics packaging. J. Microelectromech. S. 22(3), 560-68 (2013). doi:10.-109/?JMEMS.-012.-230316 CrossRef
    15.D.M. Tsai, M.C. Lin, Machine-vision-based identification for wafer tracking in solar cell manufacturing. Robot Cim-Int. Manuf. 29(5), 312-21 (2013). doi:10.-016/?j.?rcim.-013.-1.-09 CrossRef MathSciNet
    16.S.M. Hong, C.S. Kang, J.P. Jung, Flux-free direct chip attachment of solder-bump flip chip by Ar+H? plasma treatment. J. Electron. Mater. 31(10), 1104-111 (2002). doi:10.-007/?s11664-002-0049-z CrossRef
    17.H.Y. Zhang, D. Pinjala, T.N. Wong, Development of liquid cooling techniques for flip chip ball grid array packages with high heat flux dissipations. IEEE Trans. Compon. Packag. Technol. 28(1), 127-35 (2005). doi:10.-109/?TCAPT.-004.-43164 CrossRef MATH
    18.J.U. Knickerbocker, P.S. Andry, B. Dang, Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553-69 (2008). doi:10.-147/?JRD.-008.-388564 CrossRef
    19.J. Lu, H. Takagi, R. Maeda, Chip to wafer temporary bonding with self-alignment by patterned FDTS layer for size-free MEMS integration. Proceedings of IEEE Sensors Conference, 1121-124 (2011)
    20.M. Manna, Effect of fluxing chemical: an option for Zn-5?wt% Al alloy coating on wire surface by single hot dip process. Surf. Coat. Tech. 205(12), 3716-721 (2011). doi:10.-016/?j.?surfcoat.-011.-1.-26 CrossRef
    21.S. Nyamannavar, K. Prabhu, Heat flux transients at the solder/substrate interface in dip soldering. Trans. Indian Inst. Metals 61(4), 279-82 (2008). doi:10.-007/?s12666-008-0040-3 CrossRef
    22.X. Xu, S. Xu, L. Jin, E. Song, Characteristic analysis of Otsu threshold and its applications. Pattern Recogn. Lett. 32, 956-61 (2011). doi:10.-016/?j.?patrec.-011.-1.-21 CrossRef
    23.Z. Fu, Z. Xie, Y. Zhao, Quality evaluation of adhesi
  • 作者单位:Junhui Li (1)
    Yang Xia (1)
    Wei Wang (1)
    Fuliang Wang (1)
    Wei Zhang (1)
    Wenhui Zhu (1)

    1. School of Mechanical and Electronical Engineering and State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, People’s Republic of China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu’s method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ?.2 cm s?. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from 4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s?. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80-0 ms when dipping speed is from 1.6 to 4.0 cm s?. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ?5 ms. Keywords Dipping acceleration Dipping speed Dipping time Viscosity Image processing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700