用户名: 密码: 验证码:
1H MR spectroscopy with external reference solution at 1.5?T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches
详细信息    查看全文
  • 作者:Waka Mizukoshi (1)
    Eito Kozawa (1)
    Kaiji Inoue (2)
    Naoko Saito (1)
    Naoko Nishi (1)
    Toshiaki Saeki (3)
    Fumiko Kimura (1)
  • 关键词:Breast neoplasm ; Magnetic resonance spectroscopy ; Diagnosis ; Choline ; Breast benign lesion
  • 刊名:European Radiology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:23
  • 期:1
  • 页码:75-83
  • 全文大小:300KB
  • 参考文献:1. Gavenonis SC, Roth SO (2010) Role of magnetic resonance imaging in evaluating the extent of disease. Magn Reson Imaging Clin N Am 18:199-06 CrossRef
    2. Moon M, Cornfeld D, Weinreb J (2009) Dynamic contrast-enhanced breast MR imaging. Magn Reson Imaging Clin N Am 17:351-62 CrossRef
    3. Hambly NM, Liberman L, Dershaw DD, Brennan S, Morris EA (2011) Background parenchymal enhancement on baseline screening breast MRI: impact on biopsy rate and short-interval follow-up. AJR Am J Roentgenol 196:218-24 CrossRef
    4. El Khouli RH, Macura KJ, Jacobs MA et al (2009) Dynamic contrast-enhanced MRI of the breast: quantitative method for kinetic curve type assessment. AJR Am J Roentgenol 193:W295–W300 CrossRef
    5. Brinck U, Fischer U, Korabiowska M, Jutrowski M, Schauer A, Grabbe E (1997) The variability of fibroadenoma in contrast-enhanced dynamic MR mammography. AJR Am J Roentgenol 168:1331-334
    6. Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35-2 CrossRef
    7. Imamura T, Isomoto I, Sueyoshi E et al (2010) Diagnostic performance of ADC for non-mass-like breast lesions on MR imaging. Magn Reson Med Sci 9:217-25 CrossRef
    8. Inoue K, Kozawa E, Mizukoshi W et al (2011) Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Jpn J Radiol 29:429-36 CrossRef
    9. Sardanelli F, Fausto A, Podo F (2008) MR spectroscopy of the breast. Radiol Med 113:56-4 CrossRef
    10. Payne GS, Dowsett M, Leach MO (1994) Hormone-dependent metabolic changes in the normal breast monitored noninvasively by 31P magnetic resonance (MR) spectroscopy. Breast 3:20-3 CrossRef
    11. Venkatesh SK, Gupta RK, Pal L, Husain N, Husain M (2001) Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 14:8-5 CrossRef
    12. Tse GM, Yeung DK, King AD, Cheung HS, Yang WT (2007) In vivo proton magnetic resonance spectroscopy of breast lesions: an update. Breast Cancer Res Treat 104:249-55 CrossRef
    13. Yeung DKY, Cheung HS, Tse GM (2001) Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy–initial results. Radiology 220:40-6
    14. Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F (2009) In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 192:1608-617 CrossRef
    15. Meisamy S, Bolan PJ, Baker EH et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0?T. Radiology 236:465-75 CrossRef
    16. Corum CA, McIntosh AD, Bolan PJ et al (2009) Feasibility of single-voxel MRS measurement of apparent diffusion coefficient of water in breast tumor. Magn Reson Med 61:1232-237 CrossRef
    17. Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB (1997) Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 38:311-21 CrossRef
    18. Tozaki M, Hoshi K (2010) 1H MR spectroscopy of invasive ductal carcinoma: correlations with FDG PET and histologic prognostic factors. AJR Am J Roentgenol 194:1384-390 CrossRef
    19. Baik HM, Su MY, Yu H, Mehta R, Nalcioglu O (2006) Quantification of choline-containing compounds in malignant breast tumors by 1H MR spectroscopy using water as an internal reference at 1.5?T. MAGMA 19:96-04 CrossRef
    20. Stanwell P, Mountford C (2007) In vivo proton MR spectroscopy of the breast. RadioGraphics 27:S253–S266 CrossRef
    21. Stanwell P, Gluch L, Clark D et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5?T. Eur Radiol 15:1037-043 CrossRef
    22. Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239:686-92 CrossRef
    23. Klijn S, De Visschere PJ, De Meerleer GO, Villeirs GM (2010) Comparison of qualitative and quantitative approach to prostate MR spectroscopy in peripheral zone cancer detection. Eur J Radiol 81:411-16 CrossRef
    24. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716-23 CrossRef
    25. McFadden D (1973) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics. Academic, New York, pp 105-42
    26. Hoskins G, Williams B, Jackson C, Norman PD, Donnan PT (2011) Assessing asthma control in UK primary care: use of routinely collected prospective observational consultation data to determine appropriateness of a variety of control assessment models. BMC Fam Pract 12:105 CrossRef
    27. Chen JH, Mehta RS, Baek HM et al (2011) Clinical characteristics and biomarkers of breast cancer associated with choline concentration measured by 1H MRS. NMR Biomed 24:316-24 CrossRef
    28. Huang W, Fisher PR, Dulaimy K, Tudorica LA, O’Hea B, Button TM (2004) Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 232:585-91 CrossRef
    29. Kvistad KA, Bakken IJ, Gribbestad IS et al (1999) Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging 10:159-64 CrossRef
    30. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209:269-75
    31. Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE (2001) The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 68:45-4 CrossRef
    32. Jagannathan NR, Kumar M, Seenu V et al (2001) Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84:1016-022 CrossRef
    33. Tse GM, Cheung HS, Pang LM et al (2003) Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. AJR Am J Roentgenol 181:1267-272
    34. Tozaki M (2011) Appropriate timing of proton MR spectroscopy in breast cancer. Magn Reson Med Sci 10:71-7 CrossRef
    35. Tozaki M, Sakamoto M, Oyama Y, Maruyama K, Fukuma E (2010) Predicting pathological response to neoadjuvant chemotherapy in breast cancer with quantitative 1H MR spectroscopy using the external standard method. J Magn Reson Imaging 31:895-02 CrossRef
    36. Bolan PJ, Meisamy S, Baker EH et al (2003) In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med 50:1134-143 CrossRef
    37. Joe BN, Chen VY, Salibi N, Fuangtharntip P, Hildebolt CF, Bae KT (2005) Evaluation of 1H-magnetic resonance spectroscopy of breast cancer pre- and postgadolinium administration. Investig Radiol 40:405-11 CrossRef
    38. Bolan PJ, DelaBarre L, Baker EH et al (2002) Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med 48:215-22 CrossRef
    39. Jacobs MA, Barker PB, Argani P, Ouwerkerk R, Bhujwalla ZM, Bluemke DA (2005) Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: a feasibility study. J Magn Reson Imaging 21:23-8 CrossRef
    40. Bartha R (2007) Effect of signal-to-noise ratio and spectral linewidth on metabolite quantification at 4?T. NMR Biomed 20:512-21 CrossRef
    41. Lenkinski RE, Wang X, Elian M, Goldberg SN (2009) Interaction of gadolinium-based MR contrast agents with choline: implications for MR spectroscopy of the breast. Magn Reson Med 61:1286-292 CrossRef
  • 作者单位:Waka Mizukoshi (1)
    Eito Kozawa (1)
    Kaiji Inoue (2)
    Naoko Saito (1)
    Naoko Nishi (1)
    Toshiaki Saeki (3)
    Fumiko Kimura (1)

    1. Department of Diagnostic Radiology, International Medical Center of Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama, Japan
    2. Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyamachou, Irumagun, Saitama, Japan
    3. Department of Breast Oncology, International Medical Center of Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama, Japan
  • ISSN:1432-1084
文摘
Objective To compare the diagnostic capability of proton (1H) magnetic resonance spectroscopy (MRS) in differentiating benign from malignant breast lesions on the basis of qualitative and quantitative approaches. Methods We performed single-voxel 1H MRS for 208 breast lesions, identified a clear total composite choline compounds (tCho) peak of signal-to-noise of ? to represent malignancy (qualitative approach), and regarded tCho concentration equal to or greater than the cut-off value to represent malignancy (quantitative approach). We compared the diagnostic ability of both approaches using the Akaike information criterion (AIC) and McFadden’s R 2. Results Histologically, 169 lesions were malignant; 39 were benign. The qualitative approach demonstrated 84.6?% sensitivity and 51.3?% specificity for differentiating malignant and benign lesions. The mean tCho concentration was 1.13?mmol/kg for malignancy, 0.43?mmol/kg for benignity. The optimal cut-off point was 0.61?mmol/kg, use of which achieved 68.1?% sensitivity and 79.4?% specificity. Calculated AIC and R 2 score suggested the superiority of the quantitative approach for differentiating malignancy. Conclusions Quantitative MRS provides higher specificity than qualitative MRS for differentiating malignant from benign lesions and could be more useful as an additional examination in routine breast MR imaging. Key Points -Magnetic resonance spectroscopy of the breast helps distinguish malignant from benign lesions. -Magnetic resonance spectra demonstrate a choline signal even from benign lesions. -Choline concentration is higher in breast carcinomas than in benign lesions. -Quantitative magnetic resonance spectroscopy differentiates breast malignancies better than qualitative MRS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700