用户名: 密码: 验证码:
Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response
详细信息    查看全文
  • 作者:Jun Zhou (1)
    Chan-Gyun Kim (2)
  • 关键词:Lotka ; Volterra prey ; predator model ; Holling type ; II functional response ; cross ; diffusion ; positive solutions ; coexistence ; uniqueness ; degree theory ; 35B32 ; 35B50 ; 35J65 ; 35K57 ; 37C25 ; 92D25
  • 刊名:SCIENCE CHINA Mathematics
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:57
  • 期:5
  • 页码:991-1010
  • 全文大小:412 KB
  • 参考文献:1. Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev, 1976, 18: 620鈥?09 CrossRef
    2. Casal A, Eilbeck J C, L贸pez-G贸mez J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion. Differential Integral Equations, 1994, 7: 411鈥?39
    3. Dancer E N. On the indices of fixed points of mappings in cones and applications. J Math Anal Appl, 1983, 91: 131鈥?51 CrossRef
    4. Dancer E N. On positive solutions of some pairs of differential equations. Trans Amer Math Soc, 1984, 284: 729鈥?43 CrossRef
    5. Deuring P. An initial-boundary value problem for a certain density-dependent diffusion system. Math Z, 1987, 194: 375鈥?96 CrossRef
    6. Du Y H, Shi J P. Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans Amer Math Soc, 2007, 359: 4557鈥?593 CrossRef
    7. Dubey B, Das B, Hussain J. A predator-prey interaction model with self and cross-diffusion. Ecological Modelling, 2001, 141: 67鈥?6 CrossRef
    8. Freedman H I. Deterministic Mathematical Models in Population Ecology. New York: Marcel Dekker Inc., 1980
    9. Gui C, Lou Y. Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model. Comm Pure Appl Math, 1994, 47: 1571鈥?594 CrossRef
    10. Guo G, Wu J. Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response. Nonlinear Anal, 2010, 72: 1632鈥?646 CrossRef
    11. Guo G, Wu J. The effect of mutual interference between predators on a predator-prey model with diffusion. J Math Anal Appl, 2012, 389: 179鈥?94 CrossRef
    12. Kan-on Y. Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics. Hiroshima Math J, 1993, 23: 509鈥?36
    13. Kindlmann P. Stability V S. complexity in model competition communities. In: Lecture Notes in Biomath, vol. 54. Berlin: Springer, 1984, 193鈥?07
    14. Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J Differential Equations, 2006, 231: 534鈥?50 CrossRef
    15. Ko W, Ryu K. Coexistence states of a predator-prey system with non-monotonic functional response. Nonlinear Anal Real World Appl, 2007, 8: 769鈥?86 CrossRef
    16. Ko W, Ryu K. A qualitative study on general Gause-type predator-prey models with constant diffusion rates. J Math Anal Appl, 2008, 344: 217鈥?30 CrossRef
    17. Ko W, Ryu K. Analysis of diffusive two-competing-prey and one-predator systems with Beddington-Deangelis functional response. Nonlinear Anal, 2009, 71: 4185鈥?202. CrossRef
    18. Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion. J Differential Equations, 2004, 197: 293鈥?14 CrossRef
    19. Kuto K. Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment. Nonlinear Anal Real World Appl, 2009, 10: 943鈥?65 CrossRef
    20. Kuto K, Yamada Y. Multiple coexistence states for a prey-predator system with cross-diffusion. J Differential Equations, 2004, 197: 315鈥?48 CrossRef
    21. Kuto K, Yamada Y. Positive solutions for Lotka-Volterra competition systems with large cross-diffusion. Appl Anal, 2010, 89: 1037鈥?066 CrossRef
    22. Leung A, Fan G. Existence of positive solutions for elliptic systems-degenerate and nondegenerate ecological models. J Math Anal Appl, 1990, 151: 512鈥?31 CrossRef
    23. Leung A W. Nonlinear Systems of Partial Differential Equations. Hackensack, NJ: World Scientific Publishing, 2009 CrossRef
    24. Li L. Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305: 143鈥?66 CrossRef
    25. Lin Z, Pedersen M. Coexistence of a general elliptic system in population dynamics. Comput Math Appl, 2004, 48: 617鈥?28 CrossRef
    26. L贸pez-G贸mez J. Positive periodic solutions of Lotka-Volterra reaction-diffusion systems. Differential Integral Equations, 1992, 5: 55鈥?2
    27. Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differential Equations, 1996, 131: 79鈥?31 CrossRef
    28. Lou Y, Ni W M. Diffusion vs cross-diffusion: an elliptic approach. J Differential Equations, 1999, 154: 157鈥?90 CrossRef
    29. Lou Y, Ni W M, Wu Y P. On the global existence of a cross-diffusion system. Discrete Contin Dyn Syst, 1998, 4: 193鈥?03 CrossRef
    30. Mimura M. Stationary pattern of some density-dependent diffusion system with competitive dynamics. Hiroshima Math J, 1981, 11: 621鈥?35
    31. Mimura M, Kawasaki K. Spatial segregation in competitive interaction-diffusion equations. J Math Biol, 1980, 9: 49鈥?4 CrossRef
    32. Nakashima K, Yamada Y. Positive steady states for prey-predator models with cross-diffusion. Adv Differential Equations, 1996, 1: 1099鈥?122
    33. Nie H, Wu J H. Multiplicity and stability of a predator-prey model with non-monotonic conversion rate. Nonlinear Anal Real World Appl, 2009, 10: 154鈥?71 CrossRef
    34. Okubo A, Levin S A. Diffusion and Ecological Problems: Modern Perspectives, 2nd ed. New York: Springer-Verlag, 2001 CrossRef
    35. Pao C V. Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion. Nonlinear Anal, 2005, 60: 1197鈥?217 CrossRef
    36. Ruan W H. Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients. J Math Anal Appl, 1996, 197: 558鈥?78 CrossRef
    37. Ryu K, Ahn I. Positive coexistence of steady states for competitive interacting system with self-diffusion pressures. Bull Korean Math Soc, 2001, 38: 643鈥?55
    38. Ryu K, Ahn I. Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics. J Math Anal Appl, 2003, 283: 46鈥?5 CrossRef
    39. Ryu K, Ahn I. Positive steady-states for two interacting species models with linear self-cross diffusions. Discrete Contin Dyn Syst, 2003, 9: 1049鈥?061 CrossRef
    40. Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species. J Theoret Biol, 1979, 79: 83鈥?9 CrossRef
    41. Wang M, Wu Q. Positive solutions of a prey-predator model with predator saturation and competition. J Math Anal Appl, 2008, 345: 708鈥?18 CrossRef
    42. Yamada Y. Positive solutions for Lotka-Volterra systems with cross-diffusion. In: Handbook of differential equations: Stationary partial differential equations, vol. 6. Amsterdam: Elsevier/North-Holland, 2008, 411鈥?01
    43. Zhang C, Yan X. Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with crossdiffusion effects. Appl Math J Chinese Univ Ser B, 2011, 26: 342鈥?52 CrossRef
    44. Zhang G, Wang W, Wang X. Coexistence states for a diffusive one-prey and two-predators model with B-D functional response. J Math Anal Appl, 2012, 387: 931鈥?48 CrossRef
    45. Zhou J, Mu C. Coexistence states of a Holling type-II predator-prey system. J Math Anal Appl, 2010, 369: 555鈥?63 CrossRef
  • 作者单位:Jun Zhou (1)
    Chan-Gyun Kim (2)

    1. School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
    2. Department of Mathematics, College of William and Mary, Williamsburg, VA, 23187-8795, USA
  • ISSN:1869-1862
文摘
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response. The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response. Here, a positive solution corresponds to a coexistence state of the model. Firstly, we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane. In addition, we present the uniqueness of positive solutions in one dimension case. Secondly, we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system, and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700