用户名: 密码: 验证码:
Comparative mapping reveals similar linkage of functional genes to QTL of yield-related traits between Brassica napus and Oryza sativa
详细信息    查看全文
  • 作者:FUPENG LI (1)
    CHAOZHI MA (1)
    QINGFANG CHEN (1)
    TOUMING LIU (1)
    JINXIONG SHEN (1)
    JINXING TU (1)
    YONGZHONG XING (1)
    TINGDONG FU (1)
  • 关键词:homologous gene ; yield ; related trait ; QTL ; Brassica napus ; Oryza sativa
  • 刊名:Journal of Genetics
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:91
  • 期:2
  • 页码:163-170
  • 全文大小:1020KB
  • 参考文献:1. Bi F. C., Zhang Q. F., Liu Z., Fang C., Li J. A., Su J. B. / et al. 2011 A conserved cysteine motif is critical for rice ceramide kinase activity and function. / PLoS ONE 6, e18079. CrossRef
    2. Brendel V., Kurtz S. and Walbot V. 2002 Comparative genomics of / Arabidopsis and maize: prospects and limitations. / Genome Biol. 3, REVIEWS1005.
    3. Cavell A. C., Lydiate D. J., Parkin I. A. P., Dean C. and Trick M. 1998 Collinearity between a 30-centimorgan segment of / Arabidopsis thaliana chromosome 4 and duplicated regions within the / Brassica napus genome. / Genome 41, 62-9.
    4. Gale M. D. and Devos K. M. 1998 Plant comparative genetics after 10 years. / Science 282, 656-59. CrossRef
    5. Gao X., Chen Z., Zhang J., Li X., Chen G., Li X. / et?al. 2011 OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. / Planta online 22, 713-27.
    6. Kowalski S. P., Lan T. H., Feldmann K. A. and Paterson A. H. 1994 Comparative mapping of / Arabidopsis thaliana and / Brassica oleracea chromosomes reveals islands of conserved organization. / Genetics 138, 499-10.
    7. Li Y. Y., Ma C. Z., Fu T. D., Yang G. S., Tu J. X., Chen Q. F. / et al. 2006 Construction of a molecular functional map of rapeseed ( / Brassica napus L.) using differentially expressed genes between hybrid and its parents. / Euphytica 152, 25-9. CrossRef
    8. Li Y. Y., Shen J. X., Wang T. H., Chen Q. F., Zhang X. G., Fu T. D. / et al. 2007 QTL analysis of yield-related traits and their association with functional markers in / Brassica napus L. / Aust. J. Agric. Res. 58, 759-66. CrossRef
    9. Liang C. Z., Mao L., Ware D. and Stein L. 2009 Evidence-based gene predictions in plant genomes. / Genome Res. 19, 1912-923. CrossRef
    10. Liu T. M., Shao D., Kovi M. R. and Xing Y. Z. 2010 Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice ( / Oryza sativa L.). / Theor. Appl. Genet. 120, 933-42. CrossRef
    11. Mao H., Sun S., Yao J., Wang C, Yu S., Xu C. / et al. 2010 Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. / Proc. Natl. Acad. Sci. USA 107, 19579-9584. CrossRef
    12. Parkin I. A. P., Gulden S. M., Sharpe A. G., Lukens L., Trick M., Osborn T. C. / et al. 2005 Segmental structure of the / Brassica napus genome based on comparative analysis with / Arabidopsis thaliana. / Genetics 171, 765-81. CrossRef
    13. Paterson A. H., Lan T. H., Reischmann K. P., Chang C., Lin Y. R., Liu S. C. / et al. 1996 Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence. / Nat. Genet. 14, 380-82. CrossRef
    14. Peng J. R., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E. / et al. 1999 ‘Green revolution-genes encode mutant gibberellin response modulators. / Nature 400, 256-61. CrossRef
    15. Reeves P. A., He Y., Schmitz R. J., Amasino R. M., Panella L. W. and Richards C. M. 2007 Evolutionary conservation of the / FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet ( / Beta vulgaris). / Genetics 176, 295-07. CrossRef
    16. Robert L. S., Robson F., Sharpe A., Lydiate D. and Coupland G. 1998 Conserved structure and function of the / Arabidopsis flowering time gene CONSTANS in / Brassica napus. / Plant Mol. Biol. 37, 763-72. CrossRef
    17. Shen J. R., Wu J. Y., Zhang J., Liu P. W. and Yang G. S. 2006 Analysis of differential gene expression pattern in / Brassica napus hybrid Huayouza6 and its parents using / Arabidopsis cDNA microarray. / Sci. Agric. Sin. 39, 23-8.
    18. van Dodeweerd A. M., Hall C. R., Bent E. G., Johnson S. J., Bevan M. W. and Bancroft I. 1999 Identification and analysis of homoeologous segments of the genomes of rice and / Arabidopsis thaliana. / Genome 42, 887-92.
    19. Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M. and Li W. H. 1989 Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. / Proc. Natl. Acad. Sci. USA 86, 6201-205. CrossRef
    20. Xing Y. Z. and Zhang Q. F. 2010 Genetic and molecular bases of rice yield. / Annu. Rev. Plant Biol. 61, 421-42. CrossRef
    21. Xue W. Y., Xing Y. Z., Weng X. Y., Zhao Y., Tang W. J., Wang L. / et al. 2008 Natural variation in / Ghd7 is an important regulator of heading date and yield potential in rice. / Nat. Genet. 40, 761-67. CrossRef
    22. Yu J., Hu S. N., Wang J., Wong G. K. S., Li S. G., Liu B. / et al. 2002 A draft sequence of the rice genome ( / Oryza sativa L. ssp / indica). / Science 296, 79-2. CrossRef
  • 作者单位:FUPENG LI (1)
    CHAOZHI MA (1)
    QINGFANG CHEN (1)
    TOUMING LIU (1)
    JINXIONG SHEN (1)
    JINXING TU (1)
    YONGZHONG XING (1)
    TINGDONG FU (1)

    1. National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
文摘
Oryza sativa and Brassica napus—two important crops for food and oil, respectively—share high seed yield as a common breeding goal. As a model plant, O. sativa genomics have been intensively investigated and its agronomic traits have been advanced. In the present study, we used the available information on O. sativa to conduct comparative mapping between O. sativa and B. napus, with the aim of advancing research on seed-yield and yield-related traits in B. napus. Firstly, functional markers (from 55 differentially expressed genes between a hybrid and its parents) were used to detect B. napus genes that co-localized with yield-related traits in an F2:3 population. Referring to publicly available sequences of 55 B. napus genes, 53 homologous O. sativa genes were subsequently detected by screening, and their chromosomal locations were determined using silico mapping. Comparative location of yield-related QTL between the two species showed that a total of 37 O. sativa and B. napus homologues were located in similar yield-related QTL between species. Our results indicate that homologous genes between O. sativa and B. napus may have consistent function and control similar traits, which may be helpful for agronomic gene characterization in B. napus based on what is known in O. sativa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700