用户名: 密码: 验证码:
Expression of natural human β1,4-GalT1 variants and of non-mammalian homologues in plants leads to differences in galactosylation of N-glycans
详细信息    查看全文
  • 作者:Thamara Hesselink ; Gerard J. A. Rouwendal ; Maurice G. L. Henquet…
  • 关键词:Biopharmaceutical ; β1 ; 4 ; galactosyltransferase ; N ; glycosylation ; MALDI ; TOF MS ; Non ; mammalian ; Tobacco
  • 刊名:Transgenic Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:23
  • 期:5
  • 页码:717-728
  • 全文大小:1,261 KB
  • 参考文献:1. Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98:2899-904 CrossRef
    2. Bakker H, Rouwendal GJA, Karnoup AS, Florack DEA, Stoopen GM, Helsper JPFG, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid ?-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci USA 103:7577-582 CrossRef
    3. Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on actin/ER network. Plant J 15:441-47 CrossRef
    4. Castilho A, Bohorova N, Grass J, Bohorov O, Zeitlin L, Whaley K, Altmann F, Steinkellner H (2011) Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody. PLoS ONE 6(10):e26040 CrossRef
    5. Giraudo CG, Maccioni HJF (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14:3753-766 CrossRef
    6. Goddijn OJM, Lindsey K, Lee FM, Klap JC, Sijmons PC (1993) Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter- / gusA fusion constructs. Plant J 4:863-73 CrossRef
    7. Harduin-Lepers A, Shaper JH, Shaper NL (1993) Characterization of two cis-regulatory regions in the murine ?-1,4-galactosyltransferase gene. Evidence for a negative regulatory element that controls initiation at the proximal site. J Biol Chem 268:14348-4359
    8. Huether CM, Lienhart O, Baur A, Stemmer C, Gorr G, Reski R, Decker EL (2005) Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol 7:292-99 CrossRef
    9. Lo N-W, Shaper JH, Pevsner J, Shaper NL (1998) The expanding ?4-galactosyltransferase gene family: messages from the databanks. Glycobiology 8:517-26 CrossRef
    10. Machingo QJ, Fritz A, Shur BD (2006) A ?1,4-galactosyltransferase is required for convergent extension movements in zebrafish. Dev Biol 297:471-82 CrossRef
    11. Masri KA, Appert HE, Fukuda MN (1988) Identification of the full-length coding sequence for human galactosyltransferase (?-N-acetylglucosaminide: ?1,4-galactosyltransferase). Biochem Biophys Res Commun 157:657-63 CrossRef
    12. Misaki R, Kimura Y, Palapac NQ, Yoshida S, Fujiyama K, Seki T (2002) Plant cultured cells expressing human ?-1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13:199-05 CrossRef
    13. Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K, Yoshida T, Seki T (1999) Stable expression of human ?1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci USA 96:4692-697 CrossRef
    14. Rajput B, Shaper NL, Shaper JH (1996) Transcriptional regulation of murine ?1,4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J Biol Chem 271:5131-142 CrossRef
    15. Russo RN, Shaper NL, Shaper JH (1990) Bovine ?1?→?-galactosyltransferase: two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains. In vitro translation experiments demonstrate that both the short and the long forms of the enzyme are type II membrane-bound glycoproteins. J Biol Chem 265:3324-331
    16. Russo RN, Shaper NL, Taatjes DJ, Shaper JH (1992) ?-1,4-Galactosyltransferase: a short NH2-terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for Golgi retention. J Biol Chem 267:9241-247
    17. Saint-Jore-Dupas C, Gomord V, Paris N (2004) Protein localization in the plant Golgi apparatus and the trans-Golgi network.l. Cell Mol Life Sci 61:159-71 CrossRef
    18. Schachter H, Narasimhan S, Gleeson P, Vella G (1983) Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can J Biochem Cell Biol 61:1049-066 CrossRef
    19. Schoberer J, Vavra U, Stadlmann J, Hawes C, Mach L, Steinkellner H, Strasser R (2009) Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Traffic 10:101-15 CrossRef
    20. Shaper NL, Hollis GF, Douglas JG, Kirsch IR, Shaper JH (1988) Characterization of the full length cDNA for murine ?-1,4-galactosyltransferase. Novel features at the 5-end predict two translational start sites at two in-frame AUGs. J Biol Chem 263:10420-0428
    21. Shaper Nl, Meurer JA, Joziasse DH, Chou T-DD, Smith EJ, Schnaar RL, Shaper JH (1997) The chicken genome contains two functional nonallelic ?1,4-galactosyltransferase genes. Chromosomal assignment to syntenic regions tracks fate of the two gene lineages in the human genome. J Biol Chem 272:31389-1399 CrossRef
    22. Snovida SI, Perreault H (2007) A 2,5-dihydroxybenzoic acid/N, N-dimethylaniline matrix for the analysis of oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 21:3711-715 CrossRef
    23. Strasser R, Bondili JS, Schoberer J, Svoboda B, Liebminger E, Gl?ssl J, Altmann F, Steinkellner H, Mach L (2007) Enzymatic properties and subcellular localization of Arabidopsis ?-N-acetylhexosaminidases. Plant Physiol 145: 5-16. Erratum in: (2008) Plant Physiol 147: 931
    24. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous ?1,4-galactosylated N-glycan profile. J Biol Chem 284:20479-0485 CrossRef
    25. Vézina L-P, Faye L, Lerouge P, D’Aoust M-A, Marquet-Blouin E, Burel C, Lavoie P-O, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442-55 CrossRef
    26. Wee EG, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759-768 CrossRef
    27. Youakim A, Dubois DH, Shur BD (1994) Localization of the long form of ?-1,4-galactosyltransferase to the plasma membrane and Golgi complex of 3T3 and F9 cells by immunofluorescence confocal microscopy. Proc Natl Acad Sci USA 91:10913-0917 CrossRef
  • 作者单位:Thamara Hesselink (1)
    Gerard J. A. Rouwendal (1) (3)
    Maurice G. L. Henquet (1)
    Dion E. A. Florack (1) (4)
    Johannes P. F. G. Helsper (1)
    Dirk Bosch (1) (2)

    1. Plant Research International B.V., Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
    3. Synthon B.V., Microweg 22, 6545 CM, Nijmegen, The Netherlands
    4. Philip Morris International, Quai Jeanrenaud 3, 2000, Neuchatel, Switzerland
    2. Department of Membrane Biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
  • ISSN:1573-9368
文摘
β1,4-Galactosylation of plant N-glycans is a prerequisite for commercial production of certain biopharmaceuticals in plants. Two different types of galactosylated N-glycans have initially been reported in plants as the result of expression of human β1,4-galactosyltransferase 1 (GalT). Here we show that these differences are associated with differences at its N-terminus: the natural short variant of human GalT results in hybrid type N-glycans, whereas the long form generates bi-antennary complex type N-glycans. Furthermore, expression of non-mammalian, chicken and zebrafish GalT homologues with N-termini resembling the short human GalT N-terminus also induce hybrid type N-glycans. Providing both non-mammalian GalTs with a 13 amino acid N-terminal extension that distinguishes the two naturally occurring forms of human GalT, acted to increase the levels of bi-antennary galactosylated N-glycans when expressed in tobacco leaves. Replacement of the cytosolic tail and transmembrane domain of chicken and zebrafish GalTs with the corresponding region of rat α2,6-sialyltransferase yielded a gene whose expression enhanced the level of bi-antennary galactosylation even further.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700