用户名: 密码: 验证码:
Atomistic deformation mechanisms in twinned copper nanospheres
详细信息    查看全文
  • 作者:Jianjun Bian (11)
    Xinrui Niu (12)
    Hao Zhang (13)
    Gangfeng Wang (11)

    11. Department of Engineering Mechanics
    ; SVL ; Xi鈥檃n Jiaotong University ; Xi鈥檃n ; 710049 ; China
    12. Department of Mechanical and Biomedical Engineering
    ; City University of Hong Kong ; 83 Tat Chee Ave ; Kowloon ; Hong Kong ; China
    13. Department of Chemical and Materials Engineering
    ; University of Alberta ; Edmonton ; AB ; T6G 2V4 ; Canada
  • 关键词:Nanosphere ; Twin boundary ; Strengthening
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,395 KB
  • 参考文献:1. Prieto, G, Zecevic, J, Friedrich, H, de Jong, KP, de Jongh, PE (2013) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12: pp. 34-39 CrossRef
    2. Zhu, G, Lin, Z, Jing, Q, Bai, P, Pan, C, Yang, Y, Zhou, Y, Wang, ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13: pp. 847-853 CrossRef
    3. Jang, D, Li, X, Gao, H, Greer, JR (2012) Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol 7: pp. 594-601 CrossRef
    4. Lu, L, Chen, X, Huang, X, Lu, K (2009) Revealing the maximum strength in nanotwinned copper. Science 323: pp. 607-610 CrossRef
    5. Gerberich, WW, Mook, WM, Perrey, CR, Carter, CB, Baskes, MI, Mukherjee, R, Gidwani, A, Heberlein, J, McMurry, PH, Girshick, SL (2003) Superhard silicon nanoparticles. J Mech Phys Solids 51: pp. 979-992 CrossRef
    6. Valentini, P, Gerberich, WW, Dumitrica, T (2007) Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys Rev Lett 99: pp. 175701 CrossRef
    7. Zhang, N, Deng, Q, Hong, Y, Xiong, L, Li, S, Strasberg, M, Yin, W, Zou, Y, Taylor, CR, Sawyer, G, Chen, Y (2011) Deformation mechanisms in silicon nanoparticles. J Appl Phys 109: pp. 063534 CrossRef
    8. Bian, J, Wang, G (2013) Atomistic deformation mechanisms in copper nanoparticles. J Comput Theor Nanosci 10: pp. 2299-2303 CrossRef
    9. Li, X, Wei, Y, Lu, L, Lu, K, Gao, H (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464: pp. 877-880 CrossRef
    10. Field, DP, True, BW, Lillo, TM, Flinn, JE (2004) Observation of twin boundary migration in copper during deformation. Mater Sci Eng A 372: pp. 173-179 CrossRef
    11. Mirkhani, H, Joshi, SP (2011) Crystal plasticity of nanotwinned microstructures: a discrete twin approach for copper. Acta Mater 59: pp. 5603-5617 CrossRef
    12. Deng, C, Sansoz, F (2009) Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. Appl Phys Lett 95: pp. 091914 CrossRef
    13. Afanasyev, KA, Sansoz, F (2007) Strengthening in gold nanopillars with nanoscale twins. Nano Lett 7: pp. 2056-2062 CrossRef
    14. Brown, JA, Ghoniem, NM (2010) Reversible-irreversible plasticity transition in twinned copper nanopillars. Acta Mater 58: pp. 886-894 CrossRef
    15. Hu, Q, Li, L, Ghoniew, NM (2009) Stick鈥搒lip dynamics of coherent twin boundaries in copper. Acta Mater 57: pp. 4866-4873 CrossRef
    16. Casillas, G, Palomares-Baez, JP, Rodriguez-Lopez, JL, Luo, J, Ponce, A, Esparza, R, Velazquez-Salazar, JJ, Hurtado-Macias, A, Gonzalez-Hernandez, J, Jose-Yacaman, M (2012) In situ TEM study of mechanical behaviour of twinned nanoparticles. Phil Mag 92: pp. 4437-44553 CrossRef
    17. Foiles, SM, Basker, MI, Daw, MS (1986) Embeded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33: pp. 7983-7991 CrossRef
    18. Guo, Y, Xu, T, Li, M (2012) Atomistic calculation of internal stress in nanoscale polycrystalline materials. Phil Mag 92: pp. 3064-3083 CrossRef
    19. Rawat, S, Warrier, M, Chaturvedi, S, Chavan, VM (2012) Effect of material damage on the spallation threshold of single crystal copper: a molecular dynamics study. Model Simulat Mater Sci Eng 20: pp. 015012 CrossRef
    20. Kelchner, CL, Plimpton, SJ, Hamilton, JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58: pp. 11085 CrossRef
    21. Hale, LM, Zhou, X, Zimmerman, JA, Moody, NR, Ballarini, R, Gerberich, WW (2011) Phase transformations, dislocations and hardening behavior in uniaxially compressed silicon nanospheres. Comput Mater Sci 50: pp. 1651-1660 CrossRef
    22. Nos茅, S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81: pp. 511-519 CrossRef
    23. Hoover, WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31: pp. 1695-1697 CrossRef
    24. Tsuzuki, H, Branicio, PS, Rino, JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177: pp. 518-523 CrossRef
    25. Lian, J, Wang, J, Kim, Y, Greer, J (2009) Sample boundary effect in nanoindentation of nano and microscale surface structures. J Mech Phys Solid 57: pp. 812-827 CrossRef
    26. Johnson, KL (1985) Contact Mechanics. Cambridge University Press, Cambridge CrossRef
    27. Zhu, T, Li, J, Van Vliet, KJ, Ogata, S, Yip, S, Suresh, S (2004) Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J Mech Phys Solid 52: pp. 691-724 CrossRef
    28. Marchenko, A, Zhang, H (2012) Effects of location of twin boundaries and grain size on plastic deformation of nanocrystalline copper. Metall Mater Trans A 43: pp. 3547-3555 CrossRef
    29. You, Z, Li, X, Gui, L, Lu, Q, Zhu, T, Gao, H, Lu, L (2013) Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 61: pp. 217-227 CrossRef
    30. Zhu, T, Gao, H (2012) Plastic deformation mechanism in nanotwinned metals: an insight form molecular dynamics and mechanistic modeling. Scripta Mater 66: pp. 843-848 CrossRef
    31. Wu, ZX, Zhang, YW, Srolovitz, DJ (2011) Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals. Acta Mater 59: pp. 6890-6900 CrossRef
    32. Mishin, Y, Mehl, MJ, Papaconstantopoulos, DA, Voter, AF, Kress, JD (2001) Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63: pp. 224106 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700