用户名: 密码: 验证码:
LncRNA uc.48+ is involved in diabetic neuropathic pain mediated by the P2X3 receptor in the dorsal root ganglia
详细信息    查看全文
  • 作者:Shouyu Wang ; Hong Xu ; Lifang Zou ; Jinyang Xie ; Hong Wu ; Bing Wu…
  • 关键词:P2X3 receptor ; Long non ; coding RNA (lncRNA) ; Diabetic neuropathic pain ; Dorsal root ganglia
  • 刊名:Purinergic Signalling
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:139-148
  • 全文大小:1,460 KB
  • 参考文献:1.Pruimboom L, van Dam AC (2007) Chronic pain: a non-use disease. Med Hypotheses 68:506–511. doi:10.​1016/​j.​mehy.​2006.​08.​036 CrossRef PubMed
    2.Schmader KE, Baron R, Haanpaa ML, Mayer J, O’Connor AB, Rice AS, Stacey B (2010) Treatment considerations for elderly and frail patients with neuropathic pain. Mayo Clin Proc 85:S26–S32. doi:10.​4065/​mcp.​2009.​0646 PubMedCentral CrossRef PubMed
    3.Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70:1630–1635. doi:10.​1212/​01.​wnl.​0000282763.​29778.​59 CrossRef PubMed
    4.Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321. doi:10.​1016/​j.​diabres.​2011.​10.​029 CrossRef PubMed
    5.Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11:521–534. doi:10.​1016/​S1474-4422(12)70065-0 PubMedCentral CrossRef PubMed
    6.Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM (2015) Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes 6:432–444. doi:10.​4239/​wjd.​v6.​i3.​432 PubMedCentral CrossRef PubMed
    7.Obrosova IG (2009) Diabetes and the peripheral nerve. Biochim Biophys Acta 1792:931–940. doi:10.​1016/​j.​bbadis.​2008.​11.​005 CrossRef PubMed
    8.Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293. doi:10.​2337/​dc10-1303 PubMedCentral CrossRef PubMed
    9.Davies M, Brophy S, Williams R, Taylor A (2006) The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 29:1518–1522. doi:10.​2337/​dc05-2228 CrossRef PubMed
    10.Tavakoli M, Malik RA (2008) Management of painful diabetic neuropathy. Expert Opin Pharmacother 9:2969–2978. doi:10.​1517/​1465656080249814​9 CrossRef PubMed
    11.Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19:R162–R168. doi:10.​1093/​hmg/​ddq362 PubMedCentral CrossRef PubMed
    12.Stein LD (2004) Human genome: end of the beginning. Nature 431:915–916. doi:10.​1038/​431915a CrossRef PubMed
    13.Costa FF (2010) Non-coding RNAs: meet thy masters. Bioessays 32:599–608. doi:10.​1002/​bies.​200900112 CrossRef PubMed
    14.Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.​1016/​j.​cell.​2009.​01.​002 PubMedCentral CrossRef PubMed
    15.Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467:415–419. doi:10.​1038/​nature09351 CrossRef PubMed
    16.Louro R, Smirnova AS, Verjovski-Almeida S (2009) Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93:291–298. doi:10.​1016/​j.​ygeno.​2008.​11.​009 CrossRef PubMed
    17.Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565. doi:10.​1101/​gr.​6036807 PubMedCentral CrossRef PubMed
    18.Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307. doi:10.​1016/​j.​cell.​2013.​02.​012 PubMedCentral CrossRef PubMed
    19.Di Gesualdo F, Capaccioli S, Lulli M (2014) A pathophysiological view of the long non-coding RNA world. Oncotarget 5:10976–10996, doi:10.18632/oncotarget.2770 PubMedCentral CrossRef PubMed
    20.Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 10:632–646. doi:10.​1007/​s13311-013-0199-0 PubMedCentral CrossRef PubMed
    21.Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. doi:10.​1016/​j.​tcb.​2011.​04.​001 CrossRef PubMed
    22.Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e1749. doi:10.​7554/​eLife.​01749 CrossRef
    23.Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40:248–256. doi:10.​1016/​j.​tibs.​2015.​03.​001 CrossRef PubMed
    24.Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13:971–983. doi:10.​1038/​embor.​2012.​145 PubMedCentral CrossRef PubMed
    25.Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440. doi:10.​1093/​cvr/​cvr097 PubMedCentral CrossRef PubMed
    26.Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641. doi:10.​1016/​j.​cell.​2009.​02.​006 CrossRef PubMed
    27.Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e762. doi:10.​7554/​eLife.​00762 CrossRef
    28.Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.​1146/​annurev-biochem-051410-092902 CrossRef PubMed
    29.Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86. doi:10.​1124/​pr.​58.​1.​5 CrossRef PubMed
    30.Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797. doi:10.​1152/​physrev.​00043.​2006 CrossRef PubMed
    31.Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735. doi:10.​1124/​pr.​58.​1.​5 CrossRef PubMed
    32.Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34. doi:10.​1113/​expphysiol.​2013.​071951 PubMedCentral CrossRef PubMed
    33.Gao Y, Xu C, Liang S, Zhang A, Mu S, Wang Y, Wan F (2008) Effect of tetramethylpyrazine on primary afferent transmission mediated by P2X3 receptor in neuropathic pain states. Brain Res Bull 77:27–32. doi:10.​1016/​j.​brainresbull.​2008.​02.​026 CrossRef PubMed
    34.Gao Y, Liu H, Deng L, Zhu G, Xu C, Li G, Liu S, Xie J, Liu J, Kong F, Wu R, Li G, Liang S (2011) Effect of emodin on neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons. Brain Res Bull 84:406–413. doi:10.​1016/​j.​brainresbull.​2011.​01.​017 CrossRef PubMed
    35.Liang S, Xu C, Li G, Gao Y (2010) P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional Chinese medicine. Neurochem Int 57:705–712. doi:10.​1016/​j.​neuint.​2010.​09.​004 CrossRef PubMed
    36.Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454. doi:10.​1016/​j.​pharmthera.​2005.​08.​013 CrossRef PubMed
    37.Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80:273–282. doi:10.​1016/​S0304-3959(98)00225-5 CrossRef PubMed
    38.Ueno S, Moriyama T, Honda K, Kamiya H, Sakurada T, Katsuragi T (2003) Involvement of P2X2 and P2X3 receptors in neuropathic pain in a mouse model of chronic constriction injury. Drug Dev Res 59:104–111. doi:10.​1002/​ddr.​10208 CrossRef
    39.Zhang A, Gao Y, Zhong X, Xu C, Li G, Liu S, Lin J, Li X, Zhang Y, Liu H, Linag S (2010) Effect of sodium ferulate on the hyperalgesia mediated by P2X3 receptor in the neuropathic pain rats. Brain Res 1313:215–221. doi:10.​1016/​j.​brainres.​2009.​11.​067 CrossRef PubMed
    40.Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S (2010) VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X(2)(/)(3) receptor of primary sensory neurons. Brain Res Bull 83:284–291. doi:10.​1016/​j.​brainresbull.​2010.​08.​002 CrossRef PubMed
    41.Burnstock G, Novak I (2013) Purinergic signalling and diabetes. Purinergic Signal 9:307–324. doi:10.​1007/​s11302-013-9359-2 PubMedCentral CrossRef PubMed
    42.Xu GY, Li G, Liu N, Huang LY (2011) Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 7:60. doi:10.​1186/​1744-8069-7-60 PubMedCentral CrossRef PubMed
    43.Hanani M, Blum E, Liu S, Peng L, Liang S (2014) Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents. J Cell Mol Med 18:2367–2371. doi:10.​1111/​jcmm.​12406 PubMedCentral CrossRef PubMed
    44.Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V (2009) In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145:184–195. doi:10.​1016/​j.​pain.​2009.​06.​012 PubMedCentral CrossRef PubMed
    45.Xu H, Wu B, Jiang F, Xiong S, Zhang B, Li G, Liu S, Gao Y, Xu C, Tu G, Peng H, Liang S, Xiong H (2013) High fatty acids modulate P2X(7) expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 94:63–70. doi:10.​1016/​j.​brainresbull.​2013.​02.​002 CrossRef PubMed
    46.Liu J, Li G, Peng H, Tu G, Kong F, Liu S, Gao Y, Xu H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Li G, Liang S (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9:463–479. doi:10.​1007/​s11302-013-9367-2 PubMedCentral CrossRef PubMed
    47.Gunduz O, Oltulu C, Buldum D, Guven R, Ulugol A (2011) Anti-allodynic and anti-hyperalgesic effects of ceftriaxone in streptozocin-induced diabetic rats. Neurosci Lett 491:23–25. doi:10.​1016/​j.​neulet.​2010.​12.​063 CrossRef PubMed
    48.Xu C, Xu W, Xu H, Xiong W, Gao Y, Li G, Liu S, Xie J, Tu G, Peng H, Qiu S, Liang S (2012) Role of puerarin in the signalling of neuropathic pain mediated by P2X3 receptor of dorsal root ganglion neurons. Brain Res Bull 87:37–43. doi:10.​1016/​j.​brainresbull.​2011.​10.​007 CrossRef PubMed
    49.Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS (2007) Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 8(Suppl 2):S50–S62. doi:10.​1111/​j.​1526-4637.​2006.​00179.​x CrossRef PubMed
    50.Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28(Suppl- 1):8–14. doi:10.​1002/​dmrr.​2239 CrossRef PubMed
    51.Galer BS, Gianas A, Jensen MP (2000) Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 47:123–128. doi:10.​1016/​S0168-8227(99)00112-6 CrossRef PubMed
    52.Ziegler D (2009) Painful diabetic neuropathy: advantage of novel drugs over old drugs? Diabetes Care 32(Suppl 2):S414–S419. doi:10.​2337/​dc09-S350 PubMedCentral CrossRef PubMed
    53.Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL, Overland AC, Vanderah TW, Spencer RH (2009) Peripheral mechanisms of pain and analgesia. Brain Res Rev 60:90–113. doi:10.​1016/​j.​brainresrev.​2008.​12.​017 PubMedCentral CrossRef PubMed
    54.Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274. doi:10.​1016/​j.​pneurobio.​2011.​08.​006 CrossRef PubMed
    55.Seino D, Tokunaga A, Tachibana T, Yoshiya S, Dai Y, Obata K, Yamanaka H, Kobayashi K, Noguchi K (2006) The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123:193–203. doi:10.​1016/​j.​pain.​2006.​02.​032 CrossRef PubMed
  • 作者单位:Shouyu Wang (1)
    Hong Xu (1)
    Lifang Zou (1)
    Jinyang Xie (1)
    Hong Wu (1)
    Bing Wu (1)
    Zhihua Yi (1)
    Qiulan Lv (1)
    Xi Zhang (1)
    Mofeng Ying (1)
    Shuangmei Liu (1)
    Guilin Li (1)
    Yun Gao (1)
    Changshui Xu (1)
    Chunping Zhang (1)
    Yun Xue (1)
    Shangdong Liang (1)

    1. Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Pharmacology and Toxicology
    Human Physiology
    Neurosciences
    Cancer Research
  • 出版者:Springer Netherlands
  • ISSN:1573-9546
文摘
Some long non-coding RNAs (lncRNAs) participate in physiological processes that maintain cellular and tissue homeostasis, and thus, the dysregulated expression of lncRNAs is involved in the onset and progression of many pathological conditions. Research has indicated that the genetic knockout of some lncRNAs in mice resulted in peri- or postnatal lethality or developmental defects. Diabetes mellitus (DM) is a major cause of peripheral neuropathy. Our studies showed that the expression levels of lncRNA uc.48+ in the diabetic rat dorsal root ganglia (DRG) and the DM patients’ serum samples were increased. It suggested that lncRNA uc.48+ was involved in the pathophysiological process of DM. The aim of this study was to investigate the effects of lncRNA uc.48+ small interfering RNA (siRNA) on diabetic neuropathic pain (DNP) mediated by the P2X3 receptor in the DRG. The values of the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured by the von Frey test and Hargreaves’ test, respectively. The levels of P2X3 protein and messenger RNA (mRNA) in the DRG were detected by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blotting. The experiments showed that the MWT and TWL values in DM rats were lower than those in the control rats. The MWT and TWL values in DM rats treated with lncRNA uc.48+ siRNA were increased compared to those in DM rats, but there was no significant difference between the DM rat group and the DM + scramble siRNA group. The levels of P2X3 protein and mRNA in the DM DRG were higher than those in the control, while the levels of P2X3 protein and mRNA in the DG of DM rats treated with uc.48+ siRNA were significantly decreased compared to those in DM rats. The expression levels of TNF-α in the DRG of DM rats treated with uc.48+ siRNA were significantly decreased compared to those in the DM group. The phosphorylation and activation of ERK1/2 in the DM DRG were decreased by uc.48+ siRNA treatment. Therefore, uc.48+ siRNA treatment may alleviate the DNP by inhibiting the excitatory transmission mediated by the P2X3 receptor in DRG. Keywords P2X3 receptor Long non-coding RNA (lncRNA) Diabetic neuropathic pain Dorsal root ganglia

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700