用户名: 密码: 验证码:
Mineral weathering and element cycling in soil-microorganism-plant system
详细信息    查看全文
  • 作者:YongGuan Zhu (1) (2)
    GuiLan Duan (2)
    BaoDong Chen (2)
    XinHua Peng (3)
    Zheng Chen (2)
    GuoXin Sun (2)
  • 关键词:soil ; plant ; microorganism ; geobiology
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:57
  • 期:5
  • 页码:888-896
  • 全文大小:
  • 参考文献:1. Abiven S, Menasseri S, Angers D A, et al. 2008. A model to predict soil aggregate stability dynamics following organic residue incorporation under field conditions. Soil Sci Soc Am J, 72: 119鈥?25 CrossRef
    2. Arocena J M, G枚ttlein A, Raidl S. 2004. Spatial changes of soil solution and mineral composition in the rhizosphere of Norway-spruce seedlings colonized by / Piloderma croceum. J Plant Nutr Soil Sci, 167: 479鈥?86 CrossRef
    3. Arocena J M, Velde B, Robertson S J. 2012. Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Appl Clay Sci, 64: 12鈥?7 CrossRef
    4. Bago B, Vierheilig H, Pich茅 Y, et al. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus / Glomus intraradices grown in monoxenic culture. New Phytol, 133: 273鈥?80 CrossRef
    5. Barker W W, Welch S A, Chu S, et al. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral, 83: 1551鈥?563
    6. Baxter J W, Dighton J. 2001. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch ( / Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol, 152: 139鈥?49 CrossRef
    7. Bennett P C, Rogers J R, Choi W J, et al. 2001. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J, 18: 3鈥?9 CrossRef
    8. Borch T, Kretzschmar R, Kappler A, et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol, 44: 15鈥?3 CrossRef
    9. Bronick C J, Lal R. 2005. Soil structure and management: A review. Geoderma, 124: 3鈥?2 CrossRef
    10. Casarin V, Plassard C, Souche G, et al. 2003. Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie, 23: 461鈥?69 CrossRef
    11. Chardot-Jacques V, Calvaruso C, Simon B, et al. 2013. Chrysotile Dissolution in the rhizosphere of the nickel hyperaccumulator / Leptoplax emarginata. Environ Sci Technol, 47: 2612鈥?620 CrossRef
    12. Chen X P, Zhu Y G, Hong M N, et al. 2008. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environ Toxicol Chem, 27: 881鈥?87 CrossRef
    13. Christophe C, Marie-Pierre T, Pascale F K, et al. 2013. Increase of apatite dissolution rate by Scots pine roots associated or not with / Burkholderia glathei PML1(12)Rp in open-system flow microcosms. Geochim Cosmochim Acta, 106: 287鈥?06 CrossRef
    14. Czarnes S, Hallett P D, Bengough A G, et al. 2000. Root- and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci, 51: 435鈥?43 CrossRef
    15. Detwiler R P. 1986. Land use change and the global carbon cycle: The role of tropical soils. Biogeochemistry, 2: 321鈥?23 CrossRef
    16. D铆az-Zorita M, Perfect E, Grove J H. 2002. Disruptive methods for assessing soil structure. Soil Till Res, 64: 3鈥?2 CrossRef
    17. Dickie I A, Xu B, Koide R T. 2002. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol, 156: 527鈥?35 CrossRef
    18. Dinkelaker B, Romheld V Marschner H. 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin ( / Lupinus albus L.). Plant Cell Environ, 12: 285鈥?92 CrossRef
    19. Ebelmen J J. 1845. Sur les produits de la d茅composition des esp猫ces min茅rales de la famille des silicates. Annales des Mines, 7: 3鈥?6
    20. Finlay R, Wallander H, Smits M M, et al. 2009. The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev, 23: 101鈥?06 CrossRef
    21. Gardner W K, Barber D, Parbery D G. 1983. The acquisition of phosphorus by / Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil, 70: 107鈥?24 CrossRef
    22. Glowa K R, Arocena J M, Masssicotte H B. 2003. Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J, 20: 99鈥?11 CrossRef
    23. Hoffland E, Giesler R, Jongmans A G, et al. 2003. Feldspar tunneling by fungi along natural productivity gradients. Ecosystems, 6: 739鈥?46 CrossRef
    24. Hohmann C, Winkler E, Morin G, et al. 2009. Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation. Environ Sci Technol, 44: 94鈥?01 CrossRef
    25. Houben D, Sonnet P. 2012. Zinc mineral weathering as affected by plant roots. Appl Geochem, 27: 1587鈥?592 CrossRef
    26. Huang H, Zhu Y G, Chen Z, et al. 2012. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. J Soils Sediment, 12: 402鈥?10 CrossRef
    27. Johansen A, Jakobsen I, Jensen E S. 1993. Hyphal transport by a vesicular- arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fert Soils, 16: 66鈥?0 CrossRef
    28. Johnson J F, Vance C P, Allan D L. 1996. Phosphorus deficiency in / Lupinus albus (Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiol, 112: 31鈥?1 CrossRef
    29. Jongmans A G, van Breemen N, Lundstr枚m U, et al. 1997. Rock-eating fungi. Nature 389: 682鈥?83 CrossRef
    30. Kinraide T B, 1991. Identity of the rhizotoxic aluminum species. Plant Soil 134: 167鈥?78
    31. Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85: 9鈥?4 CrossRef
    32. Kolo K, Claeys Ph. 2005. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences, 2: 277鈥?93 CrossRef
    33. Lack J G, Chaudhuri S K, Chakraborty R, et al. 2002. Anaerobic biooxidation of Fe(II) by / Dechlorosoma suillum. Microbial Ecol, 43: 424鈥?31 CrossRef
    34. Lake B A, Coolidge K M, Norton S A, et al. 2007. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. Sci Total Environ, 373: 534鈥?41 CrossRef
    35. Liu D, Dong H, Bishop M E, et al. 2011. Reduction of structural Fe(III) in nontronite by methanogen / Methanosarcina barkeri. Geochim Cosmochim Acta, 75: 1057鈥?071 CrossRef
    36. Liu D, Dong H, Bishop M, et al. 2012. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10: 150鈥?62 CrossRef
    37. Lovley D R. 2006. Bug juice: Harvesting electricity with microorganisms. Nat Rev Microbiol, 4: 497鈥?08 CrossRef
    38. Malvankar N S. and Lovley D R. 2012. Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. Chem Sus Chem, 5: 1039鈥?046 CrossRef
    39. Moyersoen B. 2006. / Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in / Dipterocarpaceae. New Phytol, 172: 753鈥?62 CrossRef
    40. Ochs M. 1996. Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol, 132: 119鈥?24 CrossRef
    41. Paris F, Botton B, Lapeyrie F. 1996. In vitro weathering of phlogopite by ectomycorrhizal fungi 2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil, 179: 141鈥?50 CrossRef
    42. Peng X, Hallett P D, Zhang B, et al. 2011. Physical response of rigid and non-rigid soils to analogues of biological exudates. Eur J Soil Sci, 62: 676鈥?84 CrossRef
    43. Plaza-Bonilla D, Alvaro-Fuentes J, Cantero-Martinez C. 2013. Soil aggregate stability as affected by fertilization type under semiarid no-tillage conditions. Soil Sci Soc Am J, 77: 284鈥?92 CrossRef
    44. Remy W, Taylor T N, Hass H, et al. 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA, 91: 11841鈥?1843 CrossRef
    45. Richmond W R, Loan M, Morton J, et al. 2004. Arsenic removal from aqueous solution via ferrihydrite crystallization control. Environ Sci Technol, 38: 2368鈥?372 CrossRef
    46. Rillig M, Mummey D L. 2006. Mycorrhizas and soil structure. New Phytol, 171: 41鈥?3 CrossRef
    47. Rosling A, Landeweert R, Lindahl B D, et al. 2003. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol, 159: 775鈥?83 CrossRef
    48. Rosling A, Lindahl B D, Taylor A F S, et al. 2004. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol, 47: 31鈥?7 CrossRef
    49. Salehi M H, Tahamtani L. 2012. Magnesium uptake and palygorskite transformation abilities of wheat and oat. Pedosphere, 22: 834鈥?41 CrossRef
    50. Sanz-Montero M E, Rodr铆guez-Aranda J P. 2012. Endomycorrhizae in Miocene paleosols: Implications in biotite weathering and accumulation of dolomite in plant roots (SW Madrid Basin, Spain). Palaeogeogr Palaeocl Palaeoecol, 333鈥?34: 121鈥?30 CrossRef
    51. Six J, Bossuyt H, Degryze S, et al. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res, 79: 7鈥?1 CrossRef
    52. Smith S E, Read D J. 2008. Mycorrhizal Symbiosis. 3rd ed. London: Academic Press
    53. Smits M M. 2005. Ectomycorrhizal fungi and biogeochemical cycles of boreal forests. Ph.D. Thesis. Wageningen: Wageningen University.
    54. Smits M M, Bonneville S, Benning L G, et al. 2012. Plant-driven weathering of apatite鈥擳he role of an ectomycorrhizal fungus. Geobiology, 10: 445鈥?56 CrossRef
    55. Sverdrup H, Hagen-Thorn A, Holmqvist J, et al. 2002. Biogeochemical processes and mechanisms. In: Sverdrup H, Stjernquist I, eds. Developing Principles and Models for Sustainable Forestry in Sweden. Dordrecht: Kluwer Academic Publishers. 91鈥?96 CrossRef
    56. Taylor L L, Leake J R, Quirk J, et al. 2009. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7: 171鈥?19 CrossRef
    57. Tisdall J M, Oades J M. 1982. Organic matter and water stable aggregates in soils. J Soil Sci, 33: 141鈥?63 CrossRef
    58. Uroz S, Calvaruso C, Turpault M P, et al. 2009. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends Microbial, 17: 378鈥?87 CrossRef
    59. van Breemen N, Finlay R D, Lundstr枚m U S, et al. 2000. Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochemistry, 49: 53鈥?7 CrossRef
    60. van Hees PAW, Rosling A, Lundstrom US, et al. 2006. The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma, 136: 364鈥?77 CrossRef
    61. van Sch枚ll L, Hoffland E, Van Breemen N. 2006a. Organic anion exudation by ectomycorrhizal fungi and / Pinus sylvestris in response to nutrient deficiencies. New Phytol, 170: 153鈥?63 CrossRef
    62. van Sch枚ll L, Smits M M, Hoffland E. 2006b. Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol, 171: 805鈥?14 CrossRef
    63. Wang X J, Chen X P, Kappler A, et al. 2009a. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing aeromonas strain isolated from paddy soil. Environ Toxicol Chem, 28: 2255鈥?262 CrossRef
    64. Wang X J, Chen X P, Yang J, et al. 2009b. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. J Environ Sci, 21: 1562鈥?568 CrossRef
    65. Wang Z S, Wang X J, Chen X P, et al. 2011. The effect of microbial iron oxidation on arsenic mobility and transformation (in Chinese). Acta Scientiae Circumstantiae, 31: 328鈥?33
    66. Weber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752鈥?64 CrossRef
    67. White A F, Schulz M S, Vivit D V, et al. 2012. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California. Geochim Cosmochim Acta, 77: 62鈥?5 CrossRef
    68. Wright S F, Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci, 161: 575鈥?86 CrossRef
    69. Xiao B, Lian B, Sun L, et al. 2012. Gene transcription response to weathering of K-bearing minerals by / Aspergillus fumigates. Chem Geo, 306鈥?07: 1鈥?
    70. Young I M, Crawford J W. 2004. Interactions and self-organization in the soil-microbe complex. Science, 304: 1634鈥?637 CrossRef
    71. Zhao Q G. 2002. Nutrient Cycling and Balance in Red Soil (in Chinese) Beijing: Science Press
  • 作者单位:YongGuan Zhu (1) (2)
    GuiLan Duan (2)
    BaoDong Chen (2)
    XinHua Peng (3)
    Zheng Chen (2)
    GuoXin Sun (2)

    1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
    2. State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
    3. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
  • ISSN:1869-1897
文摘
Soil is an essential part of the critical zone, and soil-microbe-plant system serves as a key link among lithosphere, biosphere, atmosphere and hydrosphere. As one of the habitats with the richest biodiversity, soil plays a critical role in element biogeochemistry on the earth surface (weathered crust). Here we review the soil biological processes that are relevant to mineral weathering, element cycling, and transformation, with an emphasis on rock weathering mediated by soil microbes, plant root and the rhizosphere.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700