用户名: 密码: 验证码:
PALEOMAGIA: A PHP/MYSQL database of the Precambrian paleomagnetic data
详细信息    查看全文
  • 作者:Toni Veikkolainen (1)
    Lauri J. Pesonen (1)
    David A. D. Evans (2)
  • 关键词:paleogeography ; informatics ; global ; continent ; craton ; online ; filtering ; open ; access
  • 刊名:Studia Geophysica et Geodaetica
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:58
  • 期:3
  • 页码:425-441
  • 全文大小:719 KB
  • 参考文献:1. Abrahamsen N., Pesonen L.J. and Van der Voo R., 2001. Palaeomagnetic databases: 4th Nordic Palaeomagnetic Workshop. / Bull. Geol. Soc. Den., 48, 91鈥?4.
    2. Bingen B., Mansfeld J., Sigmond E.M.O. and Stein H., 2002. Baltica-Laurentia link during the Mesoproterozoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. / Can. J. Earth Sci., 39, 1425鈥?440, DOI: 10.1139/e02-054. CrossRef
    3. Bingham D.K. and Evans M.E., 1976. Paleomagnetism of the Great Slave Supergroup, Northwest territories, Canada: the Stark Formation. / Can. J. Earth Sci., 13, 563鈥?78, DOI: 10.1139/e76-060. CrossRef
    4. Bloxham J., 2000. Sensitivity of the geomagnetic axial dipole to thermal core-mantle interactions. / Nature, 405, 63鈥?5, DOI: 10.1038/35011045. CrossRef
    5. Bogdanova S., Gorbatschev R., Grad M., Janik T., Guterch A., Kozlovskaya E., Motuza G., Skridlaite G., Starostenko V. and Taran L., 2006. EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. Geological Society of London Memoirs, 32, 599鈥?25, DOI: 10.1144/GSL.MEM.2006.032.01.36. CrossRef
    6. Buchan K.L., LeCheminant A.N. and Van Breemen O., 2009. Paleomagnetism and U-Pb geochronology of the Lac de Gras diabase dyke swarm, Slave Province, Canada: implications for relative drift of Slave and Superior provinces in the Paleoproterozoic. / Can. J. Earth Sci., 46, 361鈥?79, DOI: 10.1139/E09-026. CrossRef
    7. Buchan K.L., Mertanen S., Park R.G., Pesonen L.J., Elming S.-脜., Abrahamsen N. and Bylund G., 2000. Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key paleomagnetic poles. / Tectonophysics, 319, 167鈥?98, DOI: 10.1016/S0040-1951(00)00032-9. CrossRef
    8. Buchan K.L., Mortensen J.K., Card K.D. and Percival J.A., 1998. Paleomagnetism and U-Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Canada. / Can. J. Earth Sci., 35, 1054鈥?069, DOI: 10.1139/e98-054. CrossRef
    9. Bylund G. and Elming S.-脜., 2002. The Dala dolerites, Central Sweden and their palaeomagnetic signature. / Geologiska F枚reningens i Stockholm F枚rhandlingar, 114, 143鈥?53. CrossRef
    10. Elston D.P., Enkin R.J., Baker J. and Kisilevsky D.K., 2002. Tightening the Belt: Paleomagneticstratigraphic constraints on deposition, correlation, and deformation of the Middle Proterozoic (ca. 1.4 Ga) Belt-Purcell Supergroup, United States and Canada. / Geol. Soc. Am. Bull., 114, 619鈥?38, DOI: 10.1130/0016-7606(2002)114<0619:TTBPSC>2.0.CO;2. CrossRef
    11. Evans D.A.D. and Mitchell R.N., 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. / Geol. Soc. Am. Bull., 39, 443鈥?46, DOI: 10.1130/G31654.1.
    12. Evans M.E., 1968. Magnetization of dikes: A study of the paleomagnetism of the Widgiemooltha dike suite, Western Australia. / J. Geophys. Res., 73, 3261鈥?270, DOI: 10.1029/JB073i010p03261. CrossRef
    13. Evans M.E., 1976. Test of the dipolar nature of the geomagnetic field throughout Phanerozoic time. / Nature, 262, 676鈥?77, DOI: 10.1038/262676a0. CrossRef
    14. Glebovitsky V.A., Khil鈥檛ova V.Ya. and Kozakov I.K., 2008. Tectonics of the Siberian Craton: Interpretation of geological, geophysical, geochronological, and isotopic geochemical data. / Geotectonics, 42, 8鈥?0, DOI: 10.1134/S0016852108010020. CrossRef
    15. Gurevich E., 1993. Paleomagnetic directions and paleomagnetic pole positions: Data for the former USSR, Issue 5, Academy of Sciences, Moscow, Russia.
    16. Hospers J., 1954. Rock magnetism and polar wandering. / Nature, 173, 1183鈥?184, DOI: 10.1038/1731183a0. CrossRef
    17. Irving E., 1964. / Palaeomagnetism and its Application to Geological and Geophysical Problems. John Wiley & Sons, New York, 399 pp.
    18. Irving E., Tanczyk E. and Hastie J. (1976). Catalogue of paleomagnetic directions and poles. Geomagnetic Service of Canada, Ottawa Geomagnetic Series 6, Ottawa, 70pp.
    19. Jarboe N.A., Koppers A.A., Tauxe L., Minnett R. and Constable C., 2012. The online MagIC Database: data archiving, compilation, and visualization for the geomagnetic, paleomagnetic and rock magnetic communities. Abstract GP31A-1063, American Geophysical Union Fall Meeting, San Francisco, 2012.
    20. Kent D.V. and Smethurst M.A., 1998. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. / Earth Planet. Sci. Lett., 160, 391鈥?02, DOI: 1016/S0012-821X(98)00099-5. CrossRef
    21. Khramov A., 1971. Paleomagnetic directions and pole positions: Data for the USSR, No. 1, Soviet Geophysical Committee, World Data Center B, Moscow, Russia.
    22. Khramov A., 1979. Paleomagnetic directions and pole positions: Data for the USSR Soviet Geophysical Committee, World Data Center B, Moscow, Russia.
    23. Komissarova R., 1971. Paleomagnetic directions and pole positions: Data for the USSR, Issue 1. Academy of Science, Moscow, Russia.
    24. Korhonen K., Donadini F., Riisager P. and Pesonen L.J., 2008. GEOMAGIA50: An archeointensity database with PHP and MySQL. / Geochem. Geophys. Geosyst., 9, Q04029, DOI: 10.1029/2007GC001893. CrossRef
    25. Li Z.-X. and Evans D.A.D., 2011. Late Neoproterozoic 40掳 intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. / Geology, 39, 39鈥?2, DOI: 10.1130/G31461.1. CrossRef
    26. Lubnina N., 2009. The East European Craton in the Mesoproterozoic: new key paleomagnetic poles. / Dokl. Earth Sci., 428, 1174鈥?178, DOI: 10.1134/S1028334X09070307. CrossRef
    27. McElhinny M. and Cowley J., 1977. Paleomagnetic directions and pole positions. XIV. / Geophys. J. R. Astron. Soc., 49, 313鈥?56, DOI: 10.1111/j.1365-246X.1977.tb03712.x. CrossRef
    28. McElhinny M. and Lock J., 1996. IAGA paleomagnetic databases with Access. / Surv. Geophys., 17, 575鈥?91, DOI: 10.1007/BF01888979. CrossRef
    29. Meert J., 2014. Ediacaran-Early Ordovician paleomagnetism of Baltica: A review. / Gondwana Res., 25, 159鈥?69, DOI: 10.1016/j.gr.2013.02.003. CrossRef
    30. Merrill R., McElhinny M. and McFadden P., 1998. / The Magnetic Field of the Earth. Paleomagnetism, the Core and the Deep Mantle. Academic Press, San Diego, 531 pp.
    31. Pavlov V., 1993. Paleomagnetic directions and paleomagnetic pole positions: Data for the former USSR, Issue 8, VNIGRI Institute, Moscow, Russia.
    32. Pesonen L.J., 1987. Scandinavian paleomagnetists meet. / EOS Trans. AGU, 68(43), 1157. CrossRef
    33. Pesonen L.J., Bylund G., Torsvik T.H., Elming S.-脜. and Mertanen S., 1991. Catalogue of paleomagnetic directions and poles from Fennoscandia: Archean to Tertiary. / Tectonophysics, 195, 151鈥?07, DOI: 10.1016/0040-1951(91)90210-J,. CrossRef
    34. Pesonen L.J., Elming S.-脜., Mertanen S., Pisarevsky S., D鈥橝grella-Filho M.S., Meert J.G., Schmidt P.W., Abrahamsen N. and Bylund G., 2003. Paleomagnetic configuration of continents during the Proterozoic. / Tectonophysics, 375, 289鈥?24, DOI: 10.1016/S0040-1951(03)00343-3. CrossRef
    35. Pesonen L.J., Mertanen S. and Veikkolainen T., 2012. Paleo-Mesoproterozoic supercontinents 鈥?A paleomagnetic view. / Geophysica, 48, 5鈥?7.
    36. Pesonen L.J. and Neuvonen K., 1981. Paleomagnetism of the Baltic Shield 鈥?implications for Precambrian tectonics. In: Kr枚ner A. (Ed.), / Precambrian Plate Tectonics. Elsevier, Amsterdam, The Netherlands, 623鈥?48.
    37. Pesonen L.J. and Torsvik T.H., 1989. The Fennoscandian paleomagnetic database: compilation of palaeomagnetic directions and poles from the northern segment of the EGT. In: Freeman R. and M眉ller S. (Eds): / Proceedings of the Sixth Workshop on the European Geotraverse (EGT) Project: Data Compilations and Synoptic Interpretation. European Science Foundation, Strasbourg, France, 389鈥?99.
    38. Pesonen L.J., Evans D.A.D., Veikkolainen T. and Sangchan P., 2012. A novel Precambrian paleomagnetic database: the basis for analysing supercontinents, GAD and PSV. Abstract. Supercontinent Symposium 2012, Helsinki, Finland (http://arkisto.gtk.fi/ej/ej84/ej_084.pdf).
    39. Piper J.D.A., 1982. The Precambrian paleomagnetic record: the case for the Proterozoic supercontinent. / Earth Planet. Sci. Lett., 59, 61鈥?9, DOI: 10.1016/0012-821X(82)90118-2. CrossRef
    40. Pisarevsky S., 2005. New edition of the Global Paleomagnetic Database. / EOS Trans. AGU, 86(17), 170. CrossRef
    41. Pisarevsky S. and Bylund G., 2006. Palaeomagnetism of 935 Ma mafic dykes in southern Sweden and implications for the Sveconorwegian Loop. / Geophys. J. Int., 166, 1095鈥?104, DOI: 10.1111/j.1365-246X.2006.03076.x. CrossRef
    42. Poorter R., 1981. Precambrian paleomagnetism of Europe and the position of the Balto-Russian plate relative to Laurentia. In: Kr枚ner A. (Ed.), / Precambrian Plate Tectonics. Elsevier, Amsterdam, The Netherlands, 599鈥?22.
    43. Raub T., 2008. / Paleomagnetism of Dubawnt Supergroup, Baker Lake Basin, Nunavut, Canada: Refining Laurentia鈥檚 Paleoproterozoic Apparent Polar Wander Path. PhD Thesis, Yale University, New Haven, CT, USA.
    44. Roberts N. and Piper J.D.A., 1989. A description of the behaviour of the Earth鈥檚 magnetic field. In: Jacobs J.A. (Ed.), / Geomagnetism. Volume 3. Elsevier, New York, 163鈥?60.
    45. Roest W.R. and Srivastava S.P., 1989. Sea-floor spreading in the Labrador Sea: A new reconstruction. / Geology, 17, 1000鈥?003, DOI: 10.1130/0091-7613(1989)017<1000:SFSITL>2.3.CO;2. CrossRef
    46. Rogers J.J.W. and Santosh M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. / Gondwana Res., 5, 5鈥?2, DOI: S1342-937X(05)70883-2. CrossRef
    47. Salminen J., Pesonen L.J., Mertanen S. and Vuollo J., 2009. Palaeomagnetism of the Salla Diabase Dyke, northeastern Finland and its implication to the Baltica 鈥?Laurentia entity during the Mesoproterozoic. / Geol. Soc. London Spec. Publ., 323, 199鈥?17, DOI: 10.1144/SP323.9. CrossRef
    48. Sircombe K. and Li Z. (Eds), 2001. From basins to mountains: Rodinia at the turn of of the century. / Geological Society of Australia Abstracts, 65, 120 pp.
    49. Smirnov A.V., Evans D.A.D., Ernst R.E., S枚derlund U. and Li Z.-X., 2013. Trading partners: Tectonic history of southern africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. / Precambrian Res., 224, 11鈥?2, DOI: 10.1016/j.precamres.2012.09.020. CrossRef
    50. Smirnov A.V., Tarduno J.A. and Evans D.A.D., 2011. Evolving core conditions ca. 2 billion years ago detected by paleosecular variation. / Phys. Earth Planet. Inter., 187, 225鈥?31, DOI: 10.1016/j.pepi.2011.05.003. CrossRef
    51. Tauxe L. and Kodama K., 2009. Paleosecular variation models for ancient times: Clues from Keweenawan lava flows. / Phys. Earth Planet. Inter., 177, 31鈥?5, DOI: 10.1016/j.pepi.2009.07.006. CrossRef
    52. Teixeira W., Sabate P., Barbosa J., Noce C.M. and Carneiro M.A., 2000. Archean and Paleoproterozoic tectonic evolution of the S茫o Francisco craton, Brazil. In: Cordiani U.G., Milani E.J., Thomaz Filho A. and Campos D.A. (Eds), / Tectonic Evolution of South America. Geological Survey of Brazil, Brasilia, Brazil, 101鈥?37.
    53. Torsvik T.H. and Rehnstr枚m E., 2003. The Tornquist Sea and Baltica-Avalonia docking. / Tectonophysics, 362, 67鈥?2, DOI: 10.1016/S0040-1951(02)00631-5. CrossRef
    54. Torsvik T.H. and Smethurst M., 1999. Plate tectonic modelling: virtual reality with GMAP. / Comput. Geosci., 25, 395鈥?02, DOI: 10.1016/S0098-3004(98)00143-5. CrossRef
    55. Torsvik T.H., Van der Voo R., Preeden U., MacNiocaill C., Steinberger B., Doubrovine P.V., Van Hinsbergen D.J.J., Domeir M., Gaina C., Tohver E., Meert J.G., McCausland P.J.A. and Cocks L.R.M., 2012. Phanerozoic polar wander, palaeogeography and dynamics. / Earth Sci. Rev., 114, 325鈥?68, DOI: 10.1016/j.earscirev.2012.06.007. CrossRef
    56. Veikkolainen T., Evans D.A.D., Korhonen K. and Pesonen L.J., 2013a. On the low-inclination bias of the Precambrian geomagnetic field. / Precambrian Res., DOI: 10.1016/j.precamres.2013.09.004 (in print).
    57. Veikkolainen T., Pesonen L.J. and Korhonen K., 2013b. An analysis of geomagnetic field reversals supports the validity of the Geocentric Axial Dipole (GAD) hypothesis in the Precambrian. / Precambrian Res., DOI: 10.1016/j.precamres.2013.10.009 (in print).
    58. Van der Voo R., 1993. / Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press, Cambridge, U.K., 411 pp. CrossRef
    59. Walderhaug H.J., Torsvik T.H., Eide E.A., Sundvoll B. and Bingen B., 1999. Geochronology and palaeomagnetism of the Hunnedalen dykes, SW Norway: implications for the Sveconorwegian apparent polar wander loop. / Earth Planet. Sci. Lett., 169, 71鈥?3, DOI: 10.1016/S0012-821X(99)00066-7. CrossRef
    60. Whitmeyer S. and Karlstrom K., 2007. Tectonic model for the Proterozoic growth of North America. / Geosphere, 3, 220鈥?59, DOI: 10.1130/GES00055.1. CrossRef
    61. Zhang S., Li Z.-X., Evans D.A.D., Wu H., Li H. and Dong J., 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. / Earth Planet. Sci. Lett., 353, 145鈥?55, DOI: 10.1016/j.epsl.2012.07.034. CrossRef
    62. Zhang Q.R. and Piper J.D.A., 1997. Paleomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block: palaeolatitude and configuration of South China in the late Proterozoic supercontinent. / Precambrian Res., 85, 173鈥?99, DOI: 10.1016/S0301-9268(97)00031-4. CrossRef
  • 作者单位:Toni Veikkolainen (1)
    Lauri J. Pesonen (1)
    David A. D. Evans (2)

    1. Division of Geophysics and Astronomy, Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
    2. Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA
  • ISSN:1573-1626
文摘
Most paleomagnetic applications require a precise, rationally organized and up-todate catalogue or database of paleomagnetic results worldwide. These include reconstructions of continents, calculations of the Apparent Polar Wander Paths (APWPs) or paleolatitude drift curves, testing the Geocentric Axial Dipole (GAD) model, studies of geomagnetic paleosecular variation or reversal asymmetries, comparison of coeval results obtained from different types of rocks, estimation of inclination shallowing in sedimentary rocks and understanding the delay in remanence acquisition caused by slow cooling in large intrusions. For this purpose, various databases, such as the Global Paleomagnetic Database (GPMDB), and the Magnetics Information Consortium Database (MagIC) have been generated. This paper presents a new relational database (PALEOMAGIA) where 3278 entries of Precambrian data have been split geographically, sorted according to age and rock types and ranked using a revised version of the Van der Voo grading scheme. The latest geochronologic information is included wherever available. Significant effort has been put to the retrieval and archiving of data published in the last decade, which are virtually nonexistent in GPMDB. Here we present the database and its browser-based user interface from a scientific and a technical point of view.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700